切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (02) : 119 -122. doi: 10.3877/cma.j.issn.1674-0785.2018.02.013

所属专题: 文献

综述

血管内皮祖细胞生物学活性与血管内皮祖细胞捕获支架的研究进展
田晶1, 安毅1, 于菲2, 褚现明1,()   
  1. 1. 266100 青岛大学附属医院心内科
    2. 266021 青岛大学转化医学研究院
  • 收稿日期:2017-09-14 出版日期:2018-01-15
  • 通信作者: 褚现明

Vascular endothelial progenitor cells: biological activity and capture stents

Jing Tian1, yi An1, Fei Yu2, Xianming Chu1,()   

  1. 1. Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
    2. Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
  • Received:2017-09-14 Published:2018-01-15
  • Corresponding author: Xianming Chu
  • About author:
    Corresponding author: Chu Xianming, Email:
引用本文:

田晶, 安毅, 于菲, 褚现明. 血管内皮祖细胞生物学活性与血管内皮祖细胞捕获支架的研究进展[J]. 中华临床医师杂志(电子版), 2018, 12(02): 119-122.

Jing Tian, yi An, Fei Yu, Xianming Chu. Vascular endothelial progenitor cells: biological activity and capture stents[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(02): 119-122.

血管内皮祖细胞(EPCs)作为内皮细胞的前体细胞,具有"持续"的自我更新及定向分化的能力。EPCs捕获支架,如表面包被CD34抗体的支架,能够识别循环血液中EPCs表面特异性性结合位点,捕获并促使EPCs归巢、分化为内皮细胞,参与病变血管内皮修复、促进血管新生、改善冠脉血流。EPCs的生物学活性是决定EPCs捕获支架临床应用的关键,本文从EPCs生物学特性、功能、冠状动脉微环境对EPCs的调控机制、EPCs捕获支架的研究进展等方面进行综述,探讨EPCs捕获支架的治疗价值。

Vascular endothelial progenitor cells (EPCs) act as precursor cells of endothelial cells and have the ability of persistent self-renewal and directed differentiation. EPC capture stents, coated with CD34+ antibody, can recognize the exposed binding sites on the surface of EPCs, capture EPCs and promote them to home and differentiate into endothelial cells, participate in vascular endothelial repair, and facilitate angiogenesis to improve coronary blood flow. Studies have shown that the biological activity of EPCs is key to the clinical application of EPC capture stents. In this paper, we summarize the biological characteristics and function of EPCs and the regulatory effect of coronary artery microenvironment on EPCs, and review the progress in research of EPC capture stents to explore their therapeutic value.

1
Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options [J]. Nat Med, 2011, 17(11): 1410-1422.
2
Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use [J]. Circ Res, 2012, 110(4): 624-637.
3
Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells [J]. Arterioscler Thromb Vasc Biol, 2008, 28(9): 1584-1595.
4
Cui Y, Narasimhulu CA, Liu L, et al. Oxidized low-density lipoprotein alters endothelial progenitor cell populations [J]. Front Biosci (Landmark Ed), 2015, 20: 975-988.
5
Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk [J]. N Engl J Med, 2003, 348(7): 593-600.
6
Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood [J]. Blood, 2004, 104(9): 2752-2760.
7
Takizawa S, Nagata E, Nakayama T, et al. Recent progress in endothelial progenitor cell culture systems: potential for stroke therapy [J]. Neurol Med Chir (Tokyo), 2016, 56(6): 302-309.
8
Kaminski A, Ma N, Donndorf P, et al. Endothelial NOS is required for SDF-1alpha/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells [J]. Lab Invest, 2008, 88(1): 58-69.
9
Everaert BR, Van Craenenbroeck EM, Hoymans VY, et al. Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: focus on PI3K/AKT/eNOS pathway [J]. Int J Cardiol, 2010, 144(3): 350-366.
10
Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand [J]. Cell, 2002, 109(5): 625-637.
11
Li WD, Li NP, Song DD, et al. Metformin inhibits endothelial progenitor cell migration by decreasing matrix metalloproteinases, MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway [J]. Int J Mol Med, 2017, 39(5): 1262-1268.
12
Zhao G, Cheng XW, Piao L, et al. The soluble VEGF receptor sFlt-1 contributes to impaired neovascularization in aged mice [J]. Aging Dis, 2017, 8(3): 287-300.
13
Verloop RE, Koolwijk P, van Zonneveld AJ, et al. Proteases and receptors in the recruitment of endothelial progenitor cells in neovascularization [J]. Eur Cytokine Netw, 2009, 20(4): 207-219.
14
Liu ZJ, Tian R, Li Y, et al. SDF-1alpha-induced dual pairs of E-selectin/ligand mediate endothelial progenitor cell homing to critical ischemia [J]. Sci Rep, 2016, 6: 34416.
15
Sun M, Chen M, Liu Y, et al. Cathepsin-L contributes to cardiac repair and remodelling post-infarction [J]. Cardiovasc Res, 2011, 89(2): 374-383.
16
Mahpatra S, Firpo MT, Bacanamwo M. Inhibition of DNA methyltransferases and histone deacetylases induces bone marrow-derived multipotent adult progenitor cells to differentiate into endothelial cells [J]. Ethn Dis, 2010, 20(1 Suppl 1): S1-60-4.
17
Qu K, Wang Z, Lin XL, et al. MicroRNAs: key regulators of endothelial progenitor cell functions [J]. Clin Chim Acta, 2015, 448: 65-73.
18
Ishige-Wada M, Kwon SM, Eguchi M, et al. Jagged-1 signaling in the bone marrow microenvironment promotes endothelial progenitor cell expansion and commitment of CD133 human cord blood cells for postnatal vasculogenesis [J]. PLoS One, 2016, 11(11): e0166660.
19
Chen CY, Su CM, Hsu CJ, et al. CCN1 promotes VEGF production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-126 expression in rheumatoid arthritis [J]. J Bone Miner Res, 2017, 32(1): 34-45.
20
Mathiyalagan P, Liang Y, Kim D, et al. Angiogenic mechanisms of human CD34 stem cell exosomes in the repair of ischemic hindlimb [J]. Circ Res, 2017, 120(9): 1466-1476.
21
Han X, Li P, Yang Z, et al. Zyxin regulates endothelial von Willebrand factor secretion by reorganizing actin filaments around exocytic granules[J]. Nat Commun, 2017, 8: 14639.
22
Malinverno M, Corada M, Ferrarini L, et al. Peg3/PW1 is a marker of a subset of vessel associated endothelial progenitors [J]. Stem Cells, 2017, 35(5): 1328-1340.
23
Zheng W, Huang R, Jiang B, et al. An early-stage atherosclerosis research model based on microfluidics [J]. Small, 2016, 12(15): 2022-2034.
24
马凤霞, 任倩, 韩忠朝. 植物血凝素样氧化型低密度脂蛋白受体介导氧化型低密度脂蛋白对内皮祖细胞存活和功能的影响 [J]. 中国医学科学院学报, 2007, 29(3): 336-341.
25
童海, 雷建军, 王仁, 等. 氨氯地平拮抗ox-LDL损伤大鼠骨髓源性内皮祖细胞血管样结构形成及机制 [J]. 2015, 23(3): 231-236.
26
Vega FM, Gautier V, Fernandez-Ponce CM, et al. The atheroma plaque secretome stimulates the mobilization of endothelial progenitor cells ex vivo [J]. J Mol Cell Cardiol, 2017, 105: 12-23.
27
Yu B, Chen Q, Le Bras A, et al. Vascular stem/progenitor cell migration and differentiation in atherosclerosis [J]. Antioxid Redox Signal, 2017. [Epub ahead of print]
28
刘楠, 褚现明, 安毅. 内皮祖细胞修复冠心病内皮损伤的研究进展 [J]. 医学综述, 2015, 21(14): 2546-2549.
29
Pfisterer M, Brunner-La Rocca HP, Buser PT, et al. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents [J]. J Am Coll Cardiol, 2006, 48(12): 2584-2591.
30
Larsen K, Cheng C, Tempel D, et al. Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model [J]. Eur Heart J, 2012, 33(1): 120-128.
31
Klomp M, Beijk MA, Varma C, et al. 1-year outcome of TRIAS HR (TRI-stent adjudication study-high risk of restenosis) a multicenter, randomized trial comparing genous endothelial progenitor cell capturing stents with drug-eluting stents [J]. JACC Cardiovasc Interv, 2011, 4(8): 896-904.
32
Silber S, Damman P, Klomp M, et al. Clinical results after coronary stenting with the Genous Bio-engineered R stent: 12-month outcomes of the e-HEALING (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth) worldwide registry [J]. EuroIntervention, 2011, 6(7): 819-825.
33
Woudstra P, Kalkman DN, den Heijer P, et al. 1-year results of the REMEDEE registry: clinical outcomes after deployment of the abluminal sirolimus-coated bioengineered (combo) stent in a multicenter, prospective all-comers registry [J]. JACC Cardiovasc Interv, 2016, 9(11): 1127-1134.
34
Kalkman DN, Woudstra P, Lu H, et al. Evaluation of clinical outcomes after COMBO stent treatment in patients presenting with acute coronary syndrome[J]. Catheter Cardiovasc Interv, 2017, 90(2): E31-E37.
35
Zhu G, Wang J, Song M, et al. Overexpression of Jagged-1 ameliorates aged rat-derived endothelial progenitor cell functions and improves its transfusion efficiency for rat balloon-induced arterial injury [J]. Ann Vasc Surg, 2017, 41: 241-258.
36
李倩, 蔡丹, 刁鸿英, 等. 一种新型具有内皮祖细胞捕获能力的冠状动脉支架涂层材料体外血液相容性研究 [J/CD]. 中华临床医师杂志(电子版), 2013, 7(18): 117-119.
37
王娟, 周兵, 王欣欣, 等. Fe3O4纳米粒子与慢病毒载体共同感染内皮祖细胞的促血管新生和MRI示踪的应用 [J]. 高等学校化学学报, 2016, 37(6): 1148-1153.
38
Zhang F, Wang L, Li Y, et al. Optimizing mesoderm progenitor selection and three-dimensional microniche culture allows highly efficient endothelial differentiation and ischemic tissue repair from human pluripotent stem cells [J]. Stem Cell Res Ther, 2017, 8(1): 6.
39
Sharma B, Chang A, Red-Horse K. Coronary artery development: progenitor cells and differentiation pathways [J]. Annu Rev Physiol, 2017, 79: 1-19.
[1] 包道日娜, 梁思颖, 朱天刚. 心脏声学造影对冠状动脉粥样硬化性心脏病并发症的诊断及心功能的评估[J]. 中华医学超声杂志(电子版), 2021, 18(05): 482-486.
[2] 王佳铭, 魏刚, 马震, 王长青, 严时, 刘岩, 李慧. 乳腺癌患者外周血中内皮祖细胞检测的临床意义[J]. 中华乳腺病杂志(电子版), 2018, 12(05): 270-275.
[3] 秦玲玲, 游兆媛, 丁舒, 王晓莉, 朱萌. 基于遗忘曲线规律的随访对冠状动脉粥样硬化性心脏病介入治疗患者自我管理行为的影响[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 481-485.
[4] 郭明, 杨杰, 张宗辉, 吴茂林. 血清肌钙蛋白I对2型糖尿病合并冠状动脉粥样硬化性心脏病患者的临床价值研究[J]. 中华危重症医学杂志(电子版), 2019, 12(06): 389-392.
[5] 谢恩睿, 段一璇, 刘畅, 邓捷. 利用随机森林联合人工神经网络基于外周血细胞易感基因建立冠心病诊断模型[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 19-26.
[6] 孙莉莉, 李晓强, 张明, 朱健, 黄佃. 非编码RNAs调控内皮祖细胞对静脉血栓的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 181-185.
[7] 李婧娴, 韩兴龙, 涂元媛, 胡士军, 于淼, 雷伟. 内皮祖细胞在血管损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 176-180.
[8] 陈龙, 董兵, 刘晓玲, 何江, 余冰波, 罗丽芳, 夏文豪. 内皮祖细胞靶向归巢的双模态成像活体示踪研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 351-357.
[9] 夏杰, 唐紫萌, 吴向未. E-钙黏蛋白对血管内皮祖细胞和骨髓间充质干细胞之间的黏附作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 343-350.
[10] 魏雪娇, 张洋洋, 朱晓宇, 黄秀, 姜丽丽, 赵丹, 龙梦团, 杜玉君. 从细胞角度探讨毛细血管稀疏与肾间质纤维化[J]. 中华肾病研究电子杂志, 2020, 09(03): 124-126.
[11] 郭姣姣, 龚开政. 中性粒细胞/淋巴细胞比值、血小板/淋巴细胞比值与2型糖尿病合并冠心病患者动脉粥样硬化程度的相关性[J]. 中华临床医师杂志(电子版), 2021, 15(03): 171-176.
[12] 顾俊旭, 邢垚, 苏明, 贾玫, 王春燕. 2型糖尿病患者血清脂蛋白(a)水平与冠状动脉粥样硬化性心脏病发生风险及严重程度的相关性[J]. 中华临床医师杂志(电子版), 2021, 15(03): 164-170.
[13] 顾俊旭, 李伊凡, 李珊珊, 贾玫. 脂蛋白(a)颗粒浓度与质量浓度在冠状动脉粥样硬化性心脏病风险性评估中的应用[J]. 中华临床医师杂志(电子版), 2018, 12(07): 383-387.
[14] 郭淑亚, 杨平, 张辉. 体外反搏技术在冠状动脉粥样硬化治疗中的应用效果[J]. 中华心脏与心律电子杂志, 2018, 06(04): 199-203.
[15] 马晓瑭, 李婵娣, 李嘉辉, 许小冰. 高表达microRNA-17的内皮祖细胞外泌体对糖尿病缺血性脑卒中的治疗作用[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 263-274.
阅读次数
全文


摘要