切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 147 -151. doi: 10.3877/cma.j.issn.1674-0785.2019.02.013

所属专题: 文献

综述

白介素-17在重症哮喘中作用的研究进展
赵倩楠1, 李文文1, 李鑫2, 张才擎3,()   
  1. 1. 271016 山东泰安,泰山医学院
    2. 261000 山东潍坊,潍坊医学院
    3. 250014 济南,山东大学附属千佛山医院呼吸与危重症学科
  • 收稿日期:2018-10-25 出版日期:2019-01-15
  • 通信作者: 张才擎
  • 基金资助:
    山东省自然科学基金资助项目(ZR2014HLL003)

Role of interleukin-17 in severe asthma

Qiannan Zhao1, Wenwen Li1, Xin Li2, Caiqing Zhang3,()   

  1. 1. Taishan Medical University, Taian 271016, Shandong Province, China
    2. Weifang Medical University, Weifang 261000, Shandong Province, China
    3. Department of Respiratory and Critical Care Medicine, Qianfo Mountain Hospital of Shandong Province, Shandong University, Jinan 250014, China
  • Received:2018-10-25 Published:2019-01-15
  • Corresponding author: Caiqing Zhang
  • About author:
    Corresponding author: Zhang Caiqing, Email:
引用本文:

赵倩楠, 李文文, 李鑫, 张才擎. 白介素-17在重症哮喘中作用的研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(02): 147-151.

Qiannan Zhao, Wenwen Li, Xin Li, Caiqing Zhang. Role of interleukin-17 in severe asthma[J]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(02): 147-151.

哮喘是一种复杂的慢性炎症性疾病,是一种从轻度至重度的难治性疾病,并分为不同的临床表型。严重的哮喘治疗困难,往往需要高剂量的全身性糖皮质激素;然而在某些情况下,严重的哮喘甚至对糖皮质激素反应不佳。从重症哮喘患者获得的诱导痰和支气管活组织检查中已发现了高水平的IL-17,也已有研究表明白介素17(IL-17)在重症哮喘中起重要作用,并已经在哮喘发病机制的多个方面描述了IL-17,本文通过回顾人类研究的最新信息,描述IL-17对重症哮喘的作用,总结并讨论IL-17在调控中性粒细胞性气道炎症、诱导激素抵抗和气道重塑中的作用。

Asthma is a complex chronic inflammatory disease ranging from mild to severe refractory disease and is classified into various clinical phenotypes. Severe asthma is difficult to treat and frequently requires high doses of systemic glucocorticoids. In some cases, severe asthma even responds poorly to glucocorticoids. Several studies have suggested a central role of interleukin-17 (IL-17) in severe asthma. Indeed, high levels of IL-17 are found in induced sputum and bronchial biopsies obtained from severe asthmatics. IL-17 has also been described in multiple aspects of asthma pathogenesis. In this article therefore, we frame the topic of IL-17 effects in severe asthma by reviewing updated information from human studies and summarizing and discussing the implications of IL-17 in the regulation and control of neutrophilic airway inflammation, the induction of steroid resistance, and airway remodeling.

1
Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation [J]. Immunol Rev, 2017, 278(1): 162-172.
2
Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease [J]. J Allergy Clin Immunol, 2013, 131(3): 636-645.
3
Bartemes KR, Kephart GM, Fox SJ, et al. Enhanced innate type 2 immune response in peripheral blood from patients with asthma [J]. J Allergy Clin Immunol, 2014, 134(3): 671-678.
4
Al-Ramli W, Préfontaine D, Chouiali F, et al. T(h)17-associated cytokines (IL-17A and IL-17F) in severe asthma [J]. J Allergy Clin Immunol, 2009, 123(5): 1185-1187.
5
Rouvier E, Luciani MF, Mattei MG, et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene [J]. J Immunol, 1993, 150(12): 5445-5456.
6
Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor [J]. Immunity, 1995, 3(6): 811-821.
7
Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines [J]. J Exp Med, 1996, 183(6): 2593-2603.
8
Lee J, Ho WH, Maruoka M, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1 [J]. J Biol Chem, 2001, 276(2): 1660-1664.
9
Hirota K, Duarte JH, Veldhoen M, et al. Fate mapping of IL-17-producing T cells in inflammatory responses [J]. Nature Immnology, 2011, 12(3): 255-263.
10
Veldhoen M. Interleukin-17 is a chief orchestrator of immunity [J]. Nat Immunol, 2017, 18(6): 612-621.
11
Schwandner R, Yamaguchi K, Cao Z. Requirement of tumor necrosis factor receptor-associated factor (TRAF) 6 in interleukin-17 signal transduction [J]. J Exp Med, 2000, 191(7): 1233-1240.
12
Qian Y, Liu C, Hartupee J, et al. The adaptor Act1 is required for interleukin 17 - dependent signaling associated with autoimmune and inflammatory disease [J]. Nat Immunol, 2007, 8(3): 247-256.
13
Hartupee J, Liu C, Novotny M, et al. IL-17 enhances chemokine gene expression through mRNA stabilization [J]. J Immunol, 2007, 179(6): 4135-4141.
14
Zepp JA, Liu C, Qian W, et al. Cutting edge: TNF receptor - associated factor 4 restricts IL-17-mediated pathology and signaling processes [J]. J Immunol, 2012, 189(1): 33-37.
15
Zhu S, Pan W, Shi P, et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3 - mediated suppression of interleukin 17 receptor signaling [J]. J Exp Med, 2010, 207(12): 2647-2662.
16
Infante-Duarte C, Horton HF, Byrne MC, et al. Microbial lipopeptides induce the production of IL-17 in Th cells [J]. J Immunol, 2000, 165(11): 6107-6115.
17
Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation [J]. J Exp Med, 2005, 201(2): 233-240.
18
Sutton CE, Lalor SJ, Sweeney CM, et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity [J]. Immunity, 2009, 31(2): 331-341.
19
Martin B, Hirota K, Cua DJ, et al. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals [J]. Immunity, 2009, 31(2): 321-330.
20
Takatori H, Kanno Y, Watford WT, et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22 [J]. J Exp Med, 2009, 206(1): 35-41.
21
Spits H, Artis D, Colonna M, et al. Innate lymphoid cells-a proposal for uniform nomenclature [J]. Nat Rev Immunol, 2013, 13(2): 145-149.
22
Rachitskaya AV, Hansen AM, Horai R, et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion [J]. J. Immunol, 2008, 180(8): 5167-5171.
23
Reynolds JM, Angkasekwinai P, Dong C. IL-17 family member cytokines: regulation, and function in innate immunity [J]. Cytokine Growth Factor Rev, 2010, 21(6): 413-423.
24
Moran EM, Mullan R, McCormick J, et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-α, Oncostatin M and response to biologic therapies [J]. Arthritis Res Ther, 2009, 11(4): R113.
25
Miossec P. Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy [J]. Arthritis Rheum, 2003, 48(3): 594-601.
26
Van Hamburg JP, Asmawidjaja PS, Davelaar N, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin -17A production [J]. Arthritis Rheum, 2011, 63(1): 73-83.
27
Andoh A, Ogawa A, Bamba S, et al. Interaction between interleukin-17-producing CD4+ T cells and colonic subepithelial myofibroblasts: what are they doing in mucosal inflammation? [J]. J Gastroenterol, 2007, 42 Suppl 17: 29-33.
28
Huppert J, Closhen D, Croxford A, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption [J]. FASEB J, 2010, 24(4): 1023-1034.
29
Roussel L, Houle F, Chan C, et al. IL-17 promotes p38 MAPK - dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation [J]. J Immunol, 2010, 184(8): 4531-4537.
30
Green RH, Brightling CE, Woltmann G, et al. Analysis of induced sputum in adults with asthma:identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids [J]. Thorax, 2002, 57(10): 875-879.
31
McKinley L, Alcorn JF, Peterson A, et al. Th17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice [J]. J Immunol, 2008, 181(6): 4089-4097.
32
Chen Y, Thai P, Zhao YH, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop [J]. J Biol Chem, 2003, 278(19): 17036-17043.
33
Manni ML, Robinson KM, Alcorn JF. A tale of two cytokines: IL-17 and IL-22 in asthma and infection [J]. Expert Rev Respir Med, 2014, 8(1): 25-42.
34
Alcorn JF, Crowe CR, Kolls JK. Th17 cells in asthma and COPD [J]. Annu Rev Physiol, 2010, 72: 495-516.
35
Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8 [J]. Chest, 2001, 119(5): 1329-1336.
36
Wenzel SE, Balzar S, Cundall M, et al. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation, and wound repair [J]. J Allergy Clin Immunol, 2003, 111(6): 1345-1352.
37
Agache I, Ciobanu C, Agache C, et al. Increased serum IL-17 is an independent risk factor for severe asthma [J]. Respir Med, 2010, 104(8): 1131-1137.
38
赵生涛. IL-17在中性粒细胞性哮喘中的作用及其调控气道炎症表型的机制研究[D]. 重庆:第三军医大学, 2017: 60-62.
39
Bush A, Saglani S. Management of severe asthma in children [J]. Lancet, 2010, 376(9743): 814-825.
40
Woodruff PG, Modrek B, Choy DF, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma [J]. Am J Respir Crit Care Med, 2009, 180(5): 388-395.
41
Bergeron C, Boulet LP. Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation [J]. Chest, 2006, 129(4): 1068-1087.
42
Bellini A, Marini MA, Bianchetti L, et al. Interleukin(IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients [J]. Mucosal Immunol, 2012, 5(2): 140-149.
43
Pain M, Bermudez O, Lacoste P, et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype [J]. Eur Respir Rev, 2014, 23(131): 118-130.
44
Chang Y, Al-Alwan L, Risse P-A, et al. Th17-associated cytokines promote human airway smooth muscle cell proliferation [J]. FASEB J, 2012, 26(12): 5152-5160.
45
Dragon S, Rahman MS, Yang J, et al. IL-17 enhances IL-1 beta - mediated CXCL-8 release from human airway smooth muscle cells [J]. Am J Physiol Lung Cell Mol Physiol, 2007, 292(4): L1023-L1029.
46
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects [J]. Physiol Rev, 2013, 93(4): 1659-1720.
47
Jin J. JAMA PATIENT PAGE. Asthma Attacks [J]. JAMA, 2016, 315(8): 832.
[1] 甘丽杏, 郑永超. 阿奇霉素对COPD急性发作期患者组蛋白去乙酰化酶2表达影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 321-324.
[2] 甘丽杏, 熊维宁, 郭雪君. 慢性阻塞性肺疾病炎症因子与组蛋白去乙酰化酶2表达的临床意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 195-197.
[3] 李中祎, 张治, 曹路, 谭冲. N-乙酰半胱氨酸联合无创正压通气治疗COPD急性发作的临床分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(02): 188-192.
[4] 刘娜, 赵然然. 乙酰半胱氨酸辅助治疗慢性阻塞性肺疾病急性加重期的临床分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(02): 174-178.
[5] 谭漫琳, 李树钧. 人类鼻病毒在哮喘患者气道重塑中的作用机制及临床意义[J]. 中华肺部疾病杂志(电子版), 2020, 13(01): 92-96.
[6] 王东辉, 张方. 重症支气管哮喘的诊治进展[J]. 中华肺部疾病杂志(电子版), 2019, 12(05): 638-641.
[7] 许家艳, 杨捷, 乔云飞, 杨俊俊, 徐兴祥. 斯钙素-1在慢性阻塞性肺疾病平滑肌增殖中的作用研究[J]. 中华肺部疾病杂志(电子版), 2019, 12(04): 445-449.
[8] 谭玉萍, 王朝晖, 姚萍, 梁爱武, 杨益宝, 潘玲, 张鹏飞, 黎展华. 银杏叶提取物对慢性阻塞性肺疾病大鼠气道及肺血管重塑的影响[J]. 中华肺部疾病杂志(电子版), 2017, 10(06): 662-667.
[9] 徐鹏, 朱学敏, 魏海燕, 陈颖. 无创呼吸机治疗成人心脏病术后重症哮喘的效果分析[J]. 中华肺部疾病杂志(电子版), 2017, 10(03): 342-343.
[10] 鲁盈, 傅文宁. 激素抵抗型肾病综合征中西医治疗进展[J]. 中华肾病研究电子杂志, 2017, 06(04): 165-168.
[11] 阳晓, 黄旋, 余学清. 肾病综合征的新型生物学标志物研究进展[J]. 中华肾病研究电子杂志, 2017, 06(04): 145-148.
[12] 杨恺惟, 虞巍, 宋毅. 多西他赛联合卡铂治疗转移性去势抵抗性前列腺癌的临床探索[J]. 中华临床医师杂志(电子版), 2023, 17(01): 23-27.
[13] 高蕾, 王曦, 王楠, 周林福. 维生素D对支气管哮喘气道重塑的治疗作用及意义[J]. 中华临床医师杂志(电子版), 2019, 13(12): 943-946.
[14] 郭凯, 施建元, 顾雪明, 汤正义, 殷少军. 生物标志物在气道炎症及重塑诊治中的应用[J]. 中华诊断学电子杂志, 2017, 05(03): 213-215.
[15] 姚世斌, 何忠杰, 张宏达, 邓磊, 付石鑫, 潘丽伟, 周建筑. 急性重型颅脑损伤患者早期高级气道建立临床分析研究[J]. 中华卫生应急电子杂志, 2016, 02(03): 157-160.
阅读次数
全文


摘要