切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (11) : 868 -871. doi: 10.3877/cma.j.issn.1674-0785.2019.11.015

所属专题: 医学人文 文献

健康管理

基于北京血管健康分级指导的智能化全生命周期心脏和血管健康管理
蒋姗彤1, 王宏宇1,()   
  1. 1. 100144 北京大学首钢医院血管医学中心 北京大学医学部血管健康研究中心
  • 收稿日期:2019-04-27 出版日期:2019-06-01
  • 通信作者: 王宏宇
  • 基金资助:
    2017年首钢院内临床重点项目"血管病变综合评价系统的临床应用级血管事件预测价值研究"(2017-院-临床-01); 国家重点研发计划"三级诊疗服务协作及应用平台实践"(2017YFC0113005); 国家重点研发计划"基于人工智能的心脑血管疾病智能诊疗"(2017YFC0113003); 北京大学智慧医疗等前沿技术管理体系探索课题"心血管疾病临床研究伦理管理模式探讨";北京大学智慧医疗等前沿技术管理体系探索课题"远程医疗相关伦理问题探讨";教育部科技发展中心产学研创新基金-"智融兴教"基金"智能化的血管医学教学辅助系统的研发"(2018A02004)

Beijing vascular health stratification-based intelligent life-long management of heart and vascular health

Shantong Jiang1, Hongyu Wang1,()   

  1. 1. Department of Vascular Medicine, Peking University Shougang Hospital, Vascular Health Research Center, Peking University Health Science Center, Beijing 100144, China
  • Received:2019-04-27 Published:2019-06-01
  • Corresponding author: Hongyu Wang
  • About author:
    Corresponding author: Wang Hongyu, Email:
引用本文:

蒋姗彤, 王宏宇. 基于北京血管健康分级指导的智能化全生命周期心脏和血管健康管理[J]. 中华临床医师杂志(电子版), 2019, 13(11): 868-871.

Shantong Jiang, Hongyu Wang. Beijing vascular health stratification-based intelligent life-long management of heart and vascular health[J]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(11): 868-871.

心血管疾病的传统诊疗模式面对庞大的代谢相关心血管疾病群体已显示其局限性。在2015版基础上最新修订的北京血管健康分级系统是实现全生命周期管理心脏和血管健康和智能化辅助改善心血管疾病预后的基础。传统的心血管疾病终末期诊治的模式将被这一新型健康管理模式所取代,使"治未病"的理念得以实施,构建全科医学参与的涵盖看护照料、养老康复与发病后诊疗一体化和规范化的服务系统,使影响我国人口健康最大的慢病群体——血管相关疾病患者的负担在人工智能+互联网+5G的应用下得到前所未有的控制,助力健康中国梦想。

The traditional diagnosis and treatment model for cardiovascular diseases has shown its limitations in the face of a large population of patients with metabolic-related cardiovascular diseases. Based on the 2015 edition, the newly revised Beijing vascular health stratification is the basis for achieving intelligent life-long management of heart and vascular health to improve the prognosis of cardiovascular disease. The traditional model for the diagnosis and treatment of end-stage cardiovascular diseases will be replaced by this new type of health management model, so that the concept of ″preventive treatment of disease″ can be implemented, constructing a comprehensive and standardized service system covering nursing, pension, rehabilitation, diagnosis, and treatment. Thanks to the application of artificial intelligence, internet, and 5G, the largest chronic disease group affecting the population health of China-the burden of vascular-related diseases, which results in the largest chronic disease group in China, will be controlled unprecedentedly, thus contributing to the realization of the dream of healthy China.

表1 北京血管健康分级法补充修订标准
1
中国医药教育协会血管医学专业委员会, 中华医学会北京心血管疾病学分会血管专业学组. 北京大学医学部血管疾病社区防治中心中国血管健康评估系统应用指南(2018第三次报告) [J]. 中华医学杂志, 2018, 98(37): 2955-2967.
2
王宏宇. 推广血管健康理念,促进血管医学专业发展 [J]. 中国循环杂志, 2018, 33(10): 1026-1028.
3
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管疾病报告2018》概要 [J]. 中国循环杂志, 2019, 34(3): 209-220.
4
李春燕, 简伟研. 中老年人心血管疾病经济负担——基于中国健康与养老追踪调查的实证分析 [J]. 中国卫生政策研究, 2017, 10(5): 75-80.
5
Yip W, Hsiao WC. Non-evidence-based policy: how effective is China′s new cooperative medical scheme in reducing medical impoverishment? [J]. Soc Sci Med, 2009, 68(2): 201-209.
6
Al′Aref SJ, Anchouche K, Singh G, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J]. Eur Heart J, 2019, 40(24): 1975-1986.
7
Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: a practical primer [J]. Eur Heart J, 2019, 40(25): 2058-2073.
8
Shameer K, Johnson KW, Glicksberg BS, et al. Machine learning in cardiovascular medicine: are we there yet? [J]. Heart, 2018, 104(14): 1156-1164.
9
Schoenhagen P, Mehta N. Big data, smart computer systems, and doctor-patient relationship [J]. Eur Heart J, 2017, 38(7): 508-510.
10
Hernesniemi JA, Mahdiani S, Tynkkynen JA, et al. Extensive phenotype data and machine learning in prediction of mortality in acute coronary syndrome-the MADDEC study [J]. Ann Med, 2019, 51(2): 156-163.
11
Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis [J]. Eur Heart J, 2017, 38(7): 500-507.
12
Alsharqi M, Upton R, Mumith A, et al. Artificial intelligence: a new clinical support tool for stress echocardiography [J]. Expert Rev Med Devices, 2018, 15(8): 513-515.
13
Alsharqi M, Woodward WJ, Mumith JA, et al. Artificial intelligence and echocardiography [J]. Echo Res Pract, 2018, 5(4): R115-R125.
14
Gandhi S, Mosleh W, Shen J, et al. Automation, machine learning, and artificial intelligence in echocardiography: a brave new world [J]. Echocardiography, 2018, 35(9): 1402-1418.
[1] 王瑶瑶, 于红霞, 王宏宇. 血管健康管理与痴呆和认知障碍预防[J]. 中华临床医师杂志(电子版), 2022, 16(08): 792-795.
阅读次数
全文


摘要