切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (08) : 643 -647. doi: 10.3877/cma.j.issn.1674-0785.2020.08.012

所属专题: 文献

综述

腺相关病毒在帕金森病研究中的应用进展
何天齐1, 张晓韬1, 王敏2, 李秀华3,()   
  1. 1. 261053 山东潍坊,潍坊医学院
    2. 250014 济南,山东师范大学生命科学学院动物抗性重点实验室
    3. 250014 济南,山东第一医科大学第一附属医院神经内科
  • 收稿日期:2020-02-28 出版日期:2020-08-15
  • 通信作者: 李秀华
  • 基金资助:
    山东省重大科技创新工程项目(2018CXGC1502)

Application of adeno-associated virus in Parkinson′s disease

Tianqi He1, Xiaotao Zhang1, Min Wang2, Xiuhua Li3,()   

  1. 1. Weifang Medical University, Weifang 261053, China
    2. Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
    3. Department of Neurology, the First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
  • Received:2020-02-28 Published:2020-08-15
  • Corresponding author: Xiuhua Li
  • About author:
    Corresponding author: Li Xiuhua, Email:
引用本文:

何天齐, 张晓韬, 王敏, 李秀华. 腺相关病毒在帕金森病研究中的应用进展[J]. 中华临床医师杂志(电子版), 2020, 14(08): 643-647.

Tianqi He, Xiaotao Zhang, Min Wang, Xiuhua Li. Application of adeno-associated virus in Parkinson′s disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(08): 643-647.

帕金森病是常见于中老年的中枢神经系统变性疾病,主要发病机制尚不明确。目前治疗策略旨在减轻症状和减缓疾病的进展。腺相关病毒(AAV)介导的基因传递应用包括神经生物学研究、疾病模型和基因治疗。AAV作为神经示踪剂可用于探索基底节环路,为帕金森病发病机制的研究提供理论依据;AAV载体编码的治疗基因,为帕金森病的治疗带来了广阔前景。近年来,国内外相继开展了AAV用于帕金森病的动物实验和临床研究,取得了一定的进展。如何更好地利用AAV治疗帕金森病,又能将不良反应降到最低,成为未来学术界研究的热点。

Parkinson′s disease is a degenerative disease of the central nervous system that is common in middle-aged and elderly people, and its pathogenesis is still largely unclear. Current treatment strategies are aimed at reducing symptoms and slowing the progression of the disease. The applications of adeno-associated virus-mediated gene delivery include neurobiological research, disease modelling, and gene therapy. Adeno-associated virus as a neurotracer can be used to explore the basal ganglia circuit, providing an important tool for the research of the pathogenesis of Parkinson′s disease. The use of therapeutic genes carried by adeno-associated virus vectors has brought broad therapeutic prospects to Parkinson′s disease. In recent years, animal experiments and clinical studies of adeno-associated viruses for Parkinson′s disease have been carried out both in China and other countires, and some progress has been made. How to make better use of adeno-associated viruses and minimize the adverse reactions will become a hot research topic in the future.

图1 病毒载体的神经元投射关系[8]
1
Chen Z, Li G, Liu J, et al. Autonomic dysfunction in Parkinson′s disease: Implications for pathophysiology, diagnosis, and treatment [J]. Neurobiol Dis, 2019, 134: 104700.
2
Chopek JW, Hultborn H, Brownstone RM, et al. Multistable properties of human subthalamic nucleus neurons in Parkinson′s disease [J]. Proc Natl Acad of Sci USA, 2019, 116(48): 24326-24333.
3
Wagenbreth C, Kuehne M, Heinze HJ, et al. Deep Brain Stimulation of the Subthalamic Nucleus Influences Facial Emotion Recognition in Patients With Parkinson′s Disease: A Review [J]. Front Psychol, 2019, 10: 2638.
4
Kordower JH. AAV2-Neurturin for Parkinson′s Disease: What Lessons Have We Learned? [J]. Methods Mol Biol, 2016, 1382: 485-490.
5
Hudry E, Vandenberghe LH. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality [J]. Neuron, 2019, 101(5): 839-862.
6
Xiao W, Gao G, Ling C, et al. Impact of neutralizing antibodies against AAV is a key consideration in gene transfer to nonhuman primates [J]. Nat Med, 2018, 24(6): 699.
7
Tordo J, O′Leary C, Antunes ASLM, et al. A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency [J]. Brain, 2018, 141(7): 2014-2031.
8
Blessing D, Déglon N. Adeno-associated virus and lentivirus vectors: a refined toolkit for the central nervous system [J]. Curr Opin Virol, 2016, 21: 61-66.
9
Wang C, Kang X, Zhou L, et al. Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson′s disease-like pathology [J]. Nat Commun, 2018, 9(1): 81.
10
Yang H, Yang J, Xi W, et al. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear [J]. Nat Neurosci, 2016, 19(6): 862.
11
Loew KI, Aebischer P, Schneider BL. Direct and Retrograde Transduction of Nigral Neurons with AAV6, 8, and 9 and Intraneuronal Persistence of Viral Particles [J]. Hum Gene Ther, 2013, 24(6): 613-629.
12
Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles [J]. Science, 1965, 149(3685): 754-756.
13
Burger C, Gorbatyuk OS, Velardo MJ, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential effificiency and cell tropism after delivery to different regions of the central nervous system [J]. Mol Ther, 2004, 10(2): 302-317.
14
Dodiya HB, Bjorklund T, Stansell J 3rd, et al. Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates [J]. Mol Ther, 2010, 18(3): 579-587.
15
Furman JL, Sama DM, Gant JC, et al. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer′s disease [J]. J Neurosci, 2012, 32(46): 16129-16140.
16
Jonquieres G, Mersmann N, Klugmann CB, et al. Glial promoter selectivity following AAVdelivery to the immature brain [J]. PLoS One, 2013, 8(6): e65646.
17
Weller ML, Stone IM, Goss A, et al. Selective overexpression of excitatory amino acid transporter 2 (EAAT2) in astrocytes enhances neuro protection from moderate but not severe hypoxia-ischemia [J]. Neuroscience, 2008, 155(4): 1204-1211.
18
Samaranch L, Salegio EA, San Sebastian W, et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates [J]. Hum Gene Ther, 2012, 23(4): 382-389.
19
Faustini G, Longhena F, Varanita T, et al. Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson′s disease [J]. Acta Neuropathol, 2018, 136(4): 621-639.
20
Grames MS, Dayton RD, Jackson KL, et al. Cre-dependent AAV vectors for highly targeted expression of disease-related proteins and neurodegeneration in the substantia nigra [J]. Faseb J, 2018, 32(8): 4420-4427.
21
Albert K, Voutilainen MH, Domanskyi A, et al. Downregulation of tyrosine hydroxylase phenotype after AAV injection above substantia nigra: Caution in experimental models of Parkinson′s disease [J]. J Neurosci Res, 2019, 97(3): 346-361.
22
Betley JN, Stemson SM. Adeno-Associated Viral Vectors for Mapping,Monitoring,and Manipulating Neural Circuits [J]. Hum Gene Ther, 2011, 22(6): 669-677.
23
Albert K, Voutilainen MH, Domanskyi A. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models [J]. Genes, 2017, 8(2). pii: E63.
24
何天齐, 李敏, 王雪楠, 等. 腺相关病毒应用于大鼠丘脑纹状体通路的研究 [J]. 山东大学学报(医学版), 2020, 58(3): 65-74.
25
Karin IL, Patrick A, Bernard LS. Direct and Retrograde Transduction of Nigral Neurons with AAV6, 8, and 9 and Intraneuronal Persistence of Viral Particles [J]. Hum Gene Ther, 2013, 24(6): 613-629.
26
Dirren E, Towne CL, Setola V, et al. Intracerebroventricular Injection of Adeno-Associated Virus 6 and 9 Vectors for Cell Type-Specific Transgene Expression in the Spinal Cord [J]. Hum Gene Ther, 2014, 25(2): 109-120.
27
Rocha EM, Smith GA, Park E, et al. Glucocerebrosidase gene therapy prevents a-synucleinopathy of midbrain dopamine neurons [J]. Neurobiol Dis, 2015, 82: 495-503.
28
Oh SM, Chang MY, Song JJ, et al. Combined Nurr1 and Foxa2 roles in the therapy of Parkinson′s disease [J]. EMBO Mol Med, 2015, 7(5): 510-525.
29
Sanftner LM, Sommer JM, Suzuki BM, et al. AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters [J]. Exp Neurol, 2005, 194(2): 476-483.
30
Johnston LC, Eberling J, Pivirotto P, et al. Clinically relevant effects of convection enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys [J]. Hum Gene Ther, 2009, 20(5): 497-510.
31
Kells AP, Eberling J, Su X, et al. Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF [J]. J Neurosci, 2010, 30(28): 9567-9577.
32
Hadaczek P, Eberling JL, Pivirotto P, et al. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC [J]. Mol Ther, 2010, 18(8): 1458-1461.
33
Forsayeth JR, Eberling JL, Sanftner LM, et al. A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys [J]. Mol Ther, 2006, 14(4): 571-577.
34
Gasmi M, Brandon EP, Herzog CD, et al. AAV2- mediated delivery of human neurturin to the rat nigrostriatal system: long-term effificacy and tolerability of CERE-120 for Parkinson′s disease [J]. Neurobiol Dis, 2007, 27(1): 67-76.
35
Herzog CD, Dass B, Holden JE, et al. Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys [J]. Mov Disord, 2007, 22(8): 1124-1132.
36
Kirik D, Cederfjäll E, Halliday G. Gene therapy for Parkinson′s disease: Disease modification by GDNF family of ligands [J]. Neurobiol Dis, 2017, 97(Pt B): 179-188.
37
Loew KI, Aebischer P, Schneider BL. Direct and Retrograde Transduction of Nigral Neurons with AAV6, 8, and 9 and Intraneuronal Persistence of Viral Particles [J]. Hum Gene Ther, 2013, 24(6): 613-629.
[1] 葛盈盈, 岳金, 薛令法, 许尧祥, 赵浩然, 崔明雪, 肖文林. 靶向p38丝裂素活化蛋白激酶对兔唇裂术后瘢痕增生的影响[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 37-44.
[2] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[3] 张一健, 赵龙, 杨扬, 张贝贝, 张译予, 张斌. 造血干/祖细胞体外扩增和临床应用[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 122-127.
[4] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[5] 姬丽娅, 姬昂, 狄政莉, 熊婧, 刘志勤, 薛秀云, 费晓炜, 豆雅楠, 王利. 叶酸通过NLRP3/ASC/Caspase-1信号通路对HT22细胞拟帕金森损伤作用的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 196-203.
[6] 罗彦妮, 陈浪, 莫励华, 韦宁, 罗纯, 黎彬如. 血清CysC、Hcy水平与帕金森病伴发脑白质病变的关系[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 340-345.
[7] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[8] 郑丽华, 钱一菁, 黄崇甄, 周春娜. 山茱萸环烯醚萜苷改善6-OHDA诱导帕金森病细胞模型的损伤[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 324-331.
[9] 陈普建, 张璟, 陈芬, 陈怡伟, 余蓓蓓, 周春英. 双侧丘脑底核交叉电脉冲脑深部电刺激对帕金森病步态障碍的疗效观察[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 298-301.
[10] 李玺琳, 章邱东. 帕金森病患者胃肠功能障碍特点及其风险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 145-149.
[11] 耿磊, 张照婷, 许磊, 黄海, 孙毅, 杨伏猛, 徐凯, 胡春峰. 帕金森病前驱期基底神经节环路磁共振弥散张量成像的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(09): 995-1003.
[12] 杨团峰, 孟雪, 王艳香, 卢葭, 孔德生, 赵元立, 刘献增. 男性帕金森病患者球海绵体肌反射初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(01): 28-32.
[13] 谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 韩远远, 于紫涵, 杨玲, 程弘禹, 宋春杰. C反应蛋白与白蛋白比值和中性粒细胞与淋巴细胞比值对老年帕金森病的诊断价值[J]. 中华老年病研究电子杂志, 2023, 10(01): 14-19.
阅读次数
全文


摘要