切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 205 -208. doi: 10.3877/cma.j.issn.1674-0785.2021.03.010

综述

外泌体microRNAs在慢性阻塞性肺疾病中的研究进展
王锐英1,(), 许建英1   
  1. 1. 030001 太原,山西白求恩医院 山西医学科学院 同济山西医院 山西医科大学第三医院呼吸与危重症医学科
  • 收稿日期:2020-12-18 出版日期:2021-03-15
  • 通信作者: 王锐英
  • 基金资助:
    国家自然科学基金项目(82000053)

Progress in research of exosomal microRNAs in chronic obstructive pulmonary disease

Ruiying Wang1(), Jianying Xu1   

  1. 1. Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, the Third Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2020-12-18 Published:2021-03-15
  • Corresponding author: Ruiying Wang
引用本文:

王锐英, 许建英. 外泌体microRNAs在慢性阻塞性肺疾病中的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(03): 205-208.

Ruiying Wang, Jianying Xu. Progress in research of exosomal microRNAs in chronic obstructive pulmonary disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(03): 205-208.

外泌体是多种细胞分泌的多形性囊泡样小体,直径30~100 nm,几乎可以存在于所有体液中。外泌体可以通过转移膜受体、蛋白质、mRNA和microRNAs(miRNAs)等生物活性分子影响靶细胞的生物学功能,是细胞间交互作用的新方式。其中,外泌体miRNAs在慢性阻塞性肺疾病的发生发展中起到关键作用,已经成为研究的热点和前沿。本文旨在对外泌体miRNAs在慢性阻塞性肺疾病中的研究地位及其作为临床生物学标志物的潜在应用价值进行综述。

Exosomes are pleomorphic vesicle-like bodies secreted by a variety of cells, with a diameter of 30-100 nm, and are widely distributed in various body fluids. Exosomes can influence the biological function of target cells by transferring membrane receptors, proteins, mRNA, microRNAs (miRNAs), and other bioactive molecules, which is a new way of intercellular interaction. Exosomal miRNAs play a key role in the occurrence and development of chronic obstructive pulmonary disease. This article aims to review the cuurent research status of exosomal miRNAs in chronic obstructive pulmonary disease and their potential application value as clinical biomarkers.

1
Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease 2020 report [EB/OL].

URL    
2
Amano H, Murata K, Matsunaga H, et al. p38 Mitogen-activated protein kinase accelerates emphysema in mouse model of chronic obstructive pulmonary disease [J]. J Recept Signal Transduct Res, 2014, 34(4): 299-306.
3
Kostikas K, Bakakos P, Papiris S, et al. Systemic biomarkers in the evaluation and management of COPD patients: are we getting closer to clinical application? [J]. Curr Drug Targets, 2013, 14(2): 177-191.
4
Guiot J, Struman I, Louis E, et al. Exosomal miRNAs in lung diseases: from biologic function to therapeutic targets [J]. J Clin Med, 2019, 8(9): 1345-1372.
5
O'Farrell HE, Yang IA. Extracellular vesicles in chronic obstructive pulmonary disease (COPD) [J]. J Thorac Dis, 2019, 11(Suppl 17): S2141-S2154.
6
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release [J]. Cell Mol Life Sci, 2018,75(2): 193-208.
7
Muralidharan-Chari V, Clancy JW, Sedgwick A, et al. Microvesicles: mediators of extracellular communication during cancer progression [J]. J Cell Sci, 2010, 123(Pt 10): 1603-1611.
8
Bebelman MP, Smit MJ, Pegtel DM, et al. Biogenesis and function of extracellular vesicles in cancer [J]. Pharmacol Ther, 2018, 188: 1-11.
9
Benedikter BJ, Wouters EFM, Savelkoul PHM, et al. Extracellular vesicles released in response to respiratory exposures: implications for chronic disease [J]. J Toxicol Environ Health B Crit Rev, 2018, 21(3): 142-160.
10
Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies [J]. J Neurooncol, 2013, 113(1): 1-11.
11
Andaloussi SEL, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities [J]. Nat Rev Drug Discov, 2013, 12(5): 347-357.
12
Fujita Y, Kosaka N, Araya J, et al. Extracellular vesicles in lung microenvironment and pathogenesis [J]. Trends Mol Med, 2015, 21(9): 533-542.
13
Cordazzo C, Petrini S, Neri T, et al. Rapid shedding of proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca2+ mobilization [J]. Inflamm Res, 2014, 63(7): 539-547.
14
Anand PK, Anand E, Bleck CKE, et al. Exosomal Hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria [J]. PLoS One, 2010, 5(4): e10136.
15
Fujita Y, Kadota T, Araya J, et al. Extracellular vesicles: new players in lung immunity [J]. Am J Respir Cell Mol Biol, 2018, 58(5): 560-565.
16
Genschmer KR, Russell DW, Lal C, et al. Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the lung [J]. Cell, 2019, 176(1-2): 113-126.
17
Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go [J]. Cell, 2016, 164(6): 1226-1232.
18
Ortiz-Quintero B. Cell-free microRNAs in blood and other body fluids, as cancer biomarkers [J]. Cell Prolif, 2016, 49(3): 281-303.
19
Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs [J]. Genome Res, 2009, 19(1): 92-105.
20
Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers [J]. PLoS One, 2008, 3(9): e3148.
21
Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis [J]. Cancer Sci, 2010, 101(10): 2087-2092.
22
Ryu AR, Kim DH, Kim E, et al. The potential roles of extracellular vesicles in cigarette smoke-associated diseases [J]. Oxidative Med Cell Longev, 2018, 2018: 1-8.
23
Serban KA, Rezania S, Petrusca DN, et al. Structural and functional characterization of endothelial microparticles released by cigarette smoke [J]. Sci Rep, 2016, 6: 31596.
24
Sundar IK, Li D, Rahman I. Small RNA-sequence analysis of plasma-derived extracellular vesicle miRNAs in smokers and patients with chronic obstructive pulmonary disease as circulating biomarkers [J]. J Extracell Vesicles, 2019, 8(1): 1684816.
25
Sundar IK, Li D, Rahman I. Proteomic analysis of plasma-derived extracellular vesicles in smokers and patients with chornic obstructive pulmonary disease [J]. ACS Omega, 2019, 4(6): 10649-10661.
26
Singh KP, Maremanda KP, Li D, et al. Exosomal microRNAs are novel circulating biomarkers in cigarette, waterpipe smokers, E-cigarette users and dual smokers [J]. BMC Med Genomics, 2020, 13(1): 128.
27
Wang H, Guan X, Tu Y, et al. MicroRNA-29b attenuates non-small cell lung cancer metastasis by targeting matrix metalloproteinase 2 and PTEN [J]. J Exp Clin Cancer Res, 2015, 34(1): 59.
28
Benedikter BJ, Volgers C, Van Eijck PH, et al. Cigarette smoke extract induced exosome release is mediated by depletion of exofacial thiols and can be inhibited by thiol- antioxidants [J]. Free Radic Biol Med, 2017, 108: 334-344.
29
Kadota T, Fujita Y, Yoshioka Y, et al. Emerging role of extracellular vesicles as a senescence- associated secretory phenotype: Insights into the pathophysiology of lung diseases [J]. Mol Asp Med, 2018, 60: 92-103.
30
Heliot A, Landkocz Y, Roy Saint-Georges F, et al. Smoker extracellular vesicles influence status of human bronchial epithelial cells [J]. Int J Hyg Environ Health, 2017, 220(2Pt B): 445-454.
31
Xu H, Ling M, Xue J, et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking [J]. Theranostics, 2018, 8(19): 5419-5433.
32
Feller D, Kun J, Ruzsics I, et al. Cigarette smoke-induced pulmonary inflammation becomes systemic by circulating extracellular vesicles containing Wnt5a and inflammatory cytokines [J]. Front Immunol, 2018, 9: 1724.
33
Fujita Y, Kadota T, Araya J, et al. Extracellular vesicles: new players in lung immunity [J]. Am J Respir Cell Mol Biol, 2018, 58(5): 560-565.
34
Tan DBA, Armitage J, Teo TH, et al. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation [J]. Respir Med, 2017, 132: 261-264.
35
Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis [J]. J Extracell Vesicles, 2015, 4: 28388.
36
Hinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling [J]. Am J Pathol, 2012, 180(4): 1340-1355.
37
Michalik M, Wojcik-Pszczola K,Paw M, et al. Fibroblast-to-myofibroblast transition in bronchial asthma [J]. Cell Mol Life Sci, 2018, 75(21): 3943-3961.
38
Burke H, Heinson A, Freeman A, et al. Late breaking abstract-differentially expressed exosomal miRNAs target key inflammatory pathways in COPD[C]// ERS International Congress 2018 abstracts. 2018.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[5] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[6] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[7] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[8] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[9] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[10] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[13] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[14] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要