1 |
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury [J]. Nephron Clin Pract, 2012, 120(4): c179-184.
|
2 |
曹杰, 赵宇亮, 付平. 急性肾损伤流行病学的新进展 [J]. 中国循证医学杂志, 2019, 19(6): 631-634.
|
3 |
王玉, 唐茜. 急症ICU患者急性肾损伤流行病学分析 [J]. 齐齐哈尔医学院学报, 2017, 38(22): 2616-2619.
|
4 |
刘可心, 杨定位. 急性肾损伤的流行病学研究现状 [J/OL]. 中华临床医师杂志(电子版), 2019, 13(3): 221-224.
|
5 |
Yang QH, Liu DW, Long Y, Liu HZ, et al. Acute renal failure during sepsis: potential role of cell cycle regulation [J]. J Infect, 2009, 58(6): 459-464.
|
6 |
Iwakura T, Fujigaki Y, Fujikura T, et al. Acquired resistance to rechallenge injury after acute kidney injury in rats is associated with cell cycle arrest in proximal tubule cells [J]. Am J Physiol Renal Physiol, 2016, 310(9): F872-884.
|
7 |
Price PM, Safirstein RL, Megyesi J. The cell cycle and acute kidney injury [J]. Kidney Int, 2009, 76(6): 604-613.
|
8 |
Cuartero M, Ballús J, Sabater J, et al. Cell-cycle arrest biomarkers in urine to predict acute kidney injury in septic and non-septic critically ill patients [J]. Ann Intensive Care, 2017, 7(1): 92.
|
9 |
Nusshag C, Rupp C, Schmitt F, et al. Cell cycle biomarkers and soluble urokinase-type plasminogen activator receptor for the prediction of sepsis-induced acute kidney injury requiring renal replacement therapy: a prospective, exploratory study [J]. Crit Care Med, 2019, 47(12): e999-e1007.
|
10 |
Engelman DT, Crisafi C, Germain M, et al. Using urinary biomarkers to reduce acute kidney injury following cardiac surgery [J]. J Thorac Cardiovasc Surg, 2020, 160(5): 1235-1246. e2.
|
11 |
Yang B, Xie Y, Garzotto F, et al. Influence of patients' clinical features at intensive care unit admission on performance of cell cycle arrest biomarkers in predicting acute kidney injury [J]. Clin Chem Lab Med, 2020, 59(2): 333-342.
|
12 |
Vijayan A, Faubel S, Askenazi DJ, et al. Clinical use of the urine biomarker [TIMP-2] × [IGFBP7] for acute kidney injury risk assessment [J]. Am J Kidney Dis, 2016, 68(1): 19-28.
|
13 |
白雪, 杨冰心, 赵婉君, 等. 艾司洛尔对脓毒症大鼠心肌保护作用及其可能机制 [J]. 青岛大学学报 (医学版), 2021, 57(1): 120-124.
|
14 |
李言鹏. 艾司洛尔对脓毒症大鼠脑保护作用的研究 [D]. 兰州: 兰州大学, 2019.
|
15 |
Guo CA, Ma L, Su XL, et al. Esmolol inhibits inflammation and apoptosis in the intestinal tissue via the overexpression of NF-κB-p65 in the early stage sepsis rats [J]. Turk J Gastroenterol, 2020, 31(4): 331-341.
|
16 |
Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury [J]. J Clin Invest, 2011, 121(11): 4210-4221.
|
17 |
Gu X, Peng CY, Lin SY, et al. P16INK4a played a critical role in exacerbating acute tubular necrosis in acute kidney injury [J]. Am J Transl Res, 2019, 11(6): 3850-3861.
|
18 |
Ying Y, Kim J, Westphal SN, et al. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury [J]. J Am Soc Nephrol, 2014, 25(12): 2707-2716.
|
19 |
Higgins SP, Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis [J]. Cell Signal, 2018, 43: 1-10.
|
20 |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
|
21 |
Poukkanen M, Vaara ST, Pettilä V, et al. Acute kidney injury in patients with severe sepsis in Finnish Intensive Care Units [J]. Acta Anaesthesiol Scand, 2013, 57(7): 863-872.
|
22 |
Bouchard J, Acharya A, Cerda J, et al. A prospective international multicenter study of AKI in the intensive care unit [J]. Clin J Am Soc Nephrol, 2015, 10(8): 1324-1331.
|
23 |
Fani F, Regolisti G, Delsante M, et al. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury [J]. J Nephrol, 2018, 31(3): 351-359.
|
24 |
Bellomo R, Kellum JA, Ronco C, et al. Acute kidney injury in sepsis [J]. Intensive Care Med, 2017, 43(6): 816-828.
|
25 |
Dellepiane S, Marengo M, Cantaluppi V. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies [J]. Crit Care, 2016, 20: 61.
|
26 |
Moonen L, D'Haese PC, Vervaet BA. Epithelial cell cycle behaviour in the injured kidney [J]. Int J Mol Sci, 2018, 19(7): 2038.
|
27 |
Ma Z, Wei Q, Dong G, et al. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells [J]. Biochim Biophys Acta, 2014, 1842(7): 1088-1096.
|
28 |
朱小烽. 甲泼尼龙联合艾司洛尔对脓毒症性急性肺损伤的保护作用及机制研究 [D]. 泸州:西南医科大学, 2020.
|
29 |
Peng Q, Zhang L, Ai Y, et al. Epidemiology of acute kidney injury in intensive care septic patients based on the KDIGO guidelines [J]. Chin Med J (Engl), 2014, 127(10): 1820-1826.
|
30 |
李杜鹏, 赵妮, 罗书航, 等. 艾司洛尔对脓毒症大鼠肺脏保护作用的实验研究 [J]. 中华急诊医学杂志, 2018,27(1): 78-84.
|
31 |
李杜鹏, 方德舟, 王映珍, 等. 艾司洛尔对脓毒症大鼠肠道保护作用的实验研究 [J]. 中国急救医学, 2017, 37(1): 37-42.
|
32 |
刘新强, 温妙云, 李旭声, 等. β1受体阻滞剂通过TLR4/NF-κB信号通路抑制脓毒症心肌炎症反应 [J]. 中华危重病急救医学, 2019, 31(2): 193-197.
|
33 |
Brown RSJr, Lombardero M, Lake JR. Outcome of patients with renal insufficiency undergoing liver or liver-kidney transplantation [J]. Transplantation, 1996, 62(12): 1788-1793.
|
34 |
Macedo E, Malhotra R, Claure-Del Granado R, et al. Defining urine output criterion for acute kidney injury in critically ill patients [J]. Nephrol Dial Transplant, 2011, 26(2): 509-515.
|
35 |
Cruz DN, Bagshaw SM, Ronco C, et al. Acute kidney injury: classification and staging [J]. Contrib Nephrol, 2010, 164: 24-32.
|
36 |
Macedo E, Malhotra R, Bouchard J, et al. Oliguria is an early predictor of higher mortality in critically ill patients [J]. Kidney Int, 2011, 80(7): 760-767.
|
37 |
Pabla N, Gibson AA, Buege M, et al. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions [J]. Proc Natl Acad Sci U S A, 2015, 112(16): 5231-5236.
|
38 |
Li F, Liu Z, Tang C, et al. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury [J]. FASEB J, 2018, 32(6): 3423-3433.
|