切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 280 -287. doi: 10.3877/cma.j.issn.1674-0785.2021.04.008

所属专题: 急危重症

基础研究

艾司洛尔对脓毒症急性肾损伤大鼠的保护作用
刘景卓1, 马莉1,()   
  1. 1. 730030 兰州,兰州大学第二医学院重症医学科三病区
  • 收稿日期:2021-01-26 出版日期:2021-04-15
  • 通信作者: 马莉
  • 基金资助:
    兰州市人才创新创业项目(2018-RC-85); 兰州大学第二医院“萃英科技创新”计划面上项目(CY-2018-MS03)

Protective effect of Esmolol for sepsis-induced acute kidney injury in rats

Jingzhuo Liu1, Li Ma1,()   

  1. 1. The Third Department of Emergency Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou 730030, China
  • Received:2021-01-26 Published:2021-04-15
  • Corresponding author: Li Ma
引用本文:

刘景卓, 马莉. 艾司洛尔对脓毒症急性肾损伤大鼠的保护作用[J/OL]. 中华临床医师杂志(电子版), 2021, 15(04): 280-287.

Jingzhuo Liu, Li Ma. Protective effect of Esmolol for sepsis-induced acute kidney injury in rats[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(04): 280-287.

目的

基于细胞周期阻滞探讨艾司洛尔对脓毒症急性肾损伤(SAKI)大鼠保护作用的可能机制。

方法

48只雄性SD大鼠,按随机数字表法分为假手术组(Sham组)、模型组(CLP组)、试验组(ES组),每组16只又随机平均分为6 h组和24 h组。Sham组采用盲肠探查法,CLP组与ES组采用盲肠结扎穿刺术法建立脓毒症模型。造模成功后Sham组与CLP组分别经颈内静脉置管泵入生理盐水(速度为1 mL/h),ES组泵入艾司洛尔[给药量为15 mg/(kg·h),速度为1 ml/h]。泵药6 h后分别于术后6、24 h相应时间点处死各组大鼠,留取血清及组织标本。大鼠血液离心后采用ELISA法检测血清尿素氮(BUN)、肌酐(Cr)含量;摘取两侧肾脏,其中左侧肾脏行p53免疫组化染色,观察细胞周期阻滞情况;右侧肾脏组织置于-80℃超低温保存箱保存,待组织匀浆后一部分行Western blot分析,检测Toll样受体4(TLR-4)、核因子κB(NF-κB)、毛细血管扩张性共济失调症突变蛋白(ATM)的表达水平,另一部分肾脏组织行ELISA检测基质金属蛋白酶组织抑制剂-2(TIMP-2)、胰岛素样生长因子结合蛋白-7(IGFBP-7)水平。

结果

(1)TLR-4与NF-κB水平:ES 6 h组和CLP 6 h组较Sham 6 h组升高(P<0.05),CLP 24 h组较Sham 24 h组升高(P<0.05),ES 24 h组TLR-4水平较CLP 24 h组下降(P<0.05)。(2)大鼠血清Cr、BUN水平:ES 6 h组和CLP 6 h组较Sham 6 h组明显升高(P<0.05),ES 24 h组较CLP 24 h组降低(P<0.05)。(3)在术后6 h和24 h中,与Sham组相比,CLP组与ES组大鼠肾脏组织IGFBP-7、TIMP-2、ATM、p53水平均明显升高(P<0.05),同时ES组上述因子水平较CLP组降低(P<0.05)。

结论

艾司洛尔可能通过影响TLR-4/NF-κB/ATM/p53通路关键蛋白,减轻炎症反应和肾小管上皮细胞周期阻滞,促进SAKI大鼠肾功能恢复,进而对SAKI大鼠起到保护作用。

Objective

To investigate the underlying mechanism of Esmolol to attenuate sepsis-induced acute kidney injury (SAKI).

Methods

Forty-eight male SD rats were randomly and equally divided into a sham operation group (Sham group), a sepsis group (CLP group), and an Esmolol group (ES group). In each group, 16 rats were further randomly divided into either a 6-h group or a 24-h group. Rats in the Sham group received only cecal exploration, and the rats in the CLP and ES groups received the cecal ligation and puncture. When the model was established, internal jugular vein catheterization was performed, and normal saline (1 ml/h) was infused through the internal jugular vein in the Sham and CLP groups, while the ES group was infused with Esmolol [15 mg/(kg·h), 1 ml/h]. After infusing the drug for 6 hours, the rats in each group were sacrificed at 6 h or 24 h after the operation. Blood and kidney tissue samples were collected for further examinations. Serum was isolated by centrifugation to detect the contents of BUN and Cr by ELISA. For kidney tissue samples, left kidney sample was used for p53 immunohistochemical detection, while right kidney sample from the same rat was used for Western blot analysis of the protein expression levels of TLR-4, NF-κB, and ATM, and for ELISA to detect the TIMP-2 and IGFBP-7 level.

Results

(1)TLR-4 and NF-κB in the ES-6 h group and CLP-6 h group were significantly higher than those of the Sham-6 h group (P<0.05). And these two factors in the CLP-24 h group were also significantly higher than those of the Sham-24 h group (P<0.05). TLR-4 level in the ES-24 h group was significantly lower than that of the CLP-24 h group (P<0.05). (2) Serum Cr and BUN in the ES-6 h group and the CLP-6 h group were also significantly higher than those of the Sham group (P<0.05), but the ES-24 h group showed a decreasing trend compared with the CLP-24 h group (P<0.05). (3) The levels of IGFBP-7, TIMP-2, ATM, and p53 in the CLP group and ES group were significantly higher than those in the Sham group at each time (P<0.05), and they were significantly lower in the ES group than in the CLP group (P<0.05) at each time point.

Conclusion

Esmolol reduces inflammation and renal tubular epithelial cell cycle block, promotes the recovery of renal function in SAKI rats, and thus protects SAKI rats possibly by affecting the expression of key proteins of the TLR-4/NF-κB/ATM/p53 pathway.

图1 各组大鼠血清Cr、BUN水平及肾脏组织IGFBP-7、TIMP-2水平变化(n=8)。图a为各组大鼠血清Cr水平比较;图b为各组大鼠血清BUN水平比较;图c为各组大鼠肾脏组织IGFBP-7水平比较;图d为各组大鼠肾脏组织TIMP-2水平比较
图2 大鼠肾脏组织TLR-4、NF-κB、ATM蛋白相对表达量(n=8)。图a为各组大鼠肾脏组织TLR-4、NF-κB、ATM蛋白表达条带图;图b~d为各组大鼠肾脏组织TLR-4(图b)、NF-κB(图c)、ATM(图d)蛋白相对表达量统计图
图3 各组大鼠肾小管上皮细胞p53表达情况(免疫组化,×200)(n=8)。图a~c为Sham组(图a)、CLP组(图b)、ES组(图c)术后6 h p53表达情况;图d~f为Sham组(图a)、CLP组(图e)、ES组(图f)术后24 h p53表达情况;图g为各组大鼠肾小管上皮细胞p53表达强度统计图
1
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury [J]. Nephron Clin Pract, 2012, 120(4): c179-184.
2
曹杰, 赵宇亮, 付平. 急性肾损伤流行病学的新进展 [J]. 中国循证医学杂志, 2019, 19(6): 631-634.
3
王玉, 唐茜. 急症ICU患者急性肾损伤流行病学分析 [J]. 齐齐哈尔医学院学报, 2017, 38(22): 2616-2619.
4
刘可心, 杨定位. 急性肾损伤的流行病学研究现状 [J/OL]. 中华临床医师杂志(电子版), 2019, 13(3): 221-224.
5
Yang QH, Liu DW, Long Y, Liu HZ, et al. Acute renal failure during sepsis: potential role of cell cycle regulation [J]. J Infect, 2009, 58(6): 459-464.
6
Iwakura T, Fujigaki Y, Fujikura T, et al. Acquired resistance to rechallenge injury after acute kidney injury in rats is associated with cell cycle arrest in proximal tubule cells [J]. Am J Physiol Renal Physiol, 2016, 310(9): F872-884.
7
Price PM, Safirstein RL, Megyesi J. The cell cycle and acute kidney injury [J]. Kidney Int, 2009, 76(6): 604-613.
8
Cuartero M, Ballús J, Sabater J, et al. Cell-cycle arrest biomarkers in urine to predict acute kidney injury in septic and non-septic critically ill patients [J]. Ann Intensive Care, 2017, 7(1): 92.
9
Nusshag C, Rupp C, Schmitt F, et al. Cell cycle biomarkers and soluble urokinase-type plasminogen activator receptor for the prediction of sepsis-induced acute kidney injury requiring renal replacement therapy: a prospective, exploratory study [J]. Crit Care Med, 2019, 47(12): e999-e1007.
10
Engelman DT, Crisafi C, Germain M, et al. Using urinary biomarkers to reduce acute kidney injury following cardiac surgery [J]. J Thorac Cardiovasc Surg, 2020, 160(5): 1235-1246. e2.
11
Yang B, Xie Y, Garzotto F, et al. Influence of patients' clinical features at intensive care unit admission on performance of cell cycle arrest biomarkers in predicting acute kidney injury [J]. Clin Chem Lab Med, 2020, 59(2): 333-342.
12
Vijayan A, Faubel S, Askenazi DJ, et al. Clinical use of the urine biomarker [TIMP-2] × [IGFBP7] for acute kidney injury risk assessment [J]. Am J Kidney Dis, 2016, 68(1): 19-28.
13
白雪, 杨冰心, 赵婉君, 等. 艾司洛尔对脓毒症大鼠心肌保护作用及其可能机制 [J]. 青岛大学学报 (医学版), 2021, 57(1): 120-124.
14
李言鹏. 艾司洛尔对脓毒症大鼠脑保护作用的研究 [D]. 兰州: 兰州大学, 2019.
15
Guo CA, Ma L, Su XL, et al. Esmolol inhibits inflammation and apoptosis in the intestinal tissue via the overexpression of NF-κB-p65 in the early stage sepsis rats [J]. Turk J Gastroenterol, 2020, 31(4): 331-341.
16
Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury [J]. J Clin Invest, 2011, 121(11): 4210-4221.
17
Gu X, Peng CY, Lin SY, et al. P16INK4a played a critical role in exacerbating acute tubular necrosis in acute kidney injury [J]. Am J Transl Res, 2019, 11(6): 3850-3861.
18
Ying Y, Kim J, Westphal SN, et al. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury [J]. J Am Soc Nephrol, 2014, 25(12): 2707-2716.
19
Higgins SP, Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis [J]. Cell Signal, 2018, 43: 1-10.
20
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
21
Poukkanen M, Vaara ST, Pettilä V, et al. Acute kidney injury in patients with severe sepsis in Finnish Intensive Care Units [J]. Acta Anaesthesiol Scand, 2013, 57(7): 863-872.
22
Bouchard J, Acharya A, Cerda J, et al. A prospective international multicenter study of AKI in the intensive care unit [J]. Clin J Am Soc Nephrol, 2015, 10(8): 1324-1331.
23
Fani F, Regolisti G, Delsante M, et al. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury [J]. J Nephrol, 2018, 31(3): 351-359.
24
Bellomo R, Kellum JA, Ronco C, et al. Acute kidney injury in sepsis [J]. Intensive Care Med, 2017, 43(6): 816-828.
25
Dellepiane S, Marengo M, Cantaluppi V. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies [J]. Crit Care, 2016, 20: 61.
26
Moonen L, D'Haese PC, Vervaet BA. Epithelial cell cycle behaviour in the injured kidney [J]. Int J Mol Sci, 2018, 19(7): 2038.
27
Ma Z, Wei Q, Dong G, et al. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells [J]. Biochim Biophys Acta, 2014, 1842(7): 1088-1096.
28
朱小烽. 甲泼尼龙联合艾司洛尔对脓毒症性急性肺损伤的保护作用及机制研究 [D]. 泸州:西南医科大学, 2020.
29
Peng Q, Zhang L, Ai Y, et al. Epidemiology of acute kidney injury in intensive care septic patients based on the KDIGO guidelines [J]. Chin Med J (Engl), 2014, 127(10): 1820-1826.
30
李杜鹏, 赵妮, 罗书航, 等. 艾司洛尔对脓毒症大鼠肺脏保护作用的实验研究 [J]. 中华急诊医学杂志, 2018,27(1): 78-84.
31
李杜鹏, 方德舟, 王映珍, 等. 艾司洛尔对脓毒症大鼠肠道保护作用的实验研究 [J]. 中国急救医学, 2017, 37(1): 37-42.
32
刘新强, 温妙云, 李旭声, 等. β1受体阻滞剂通过TLR4/NF-κB信号通路抑制脓毒症心肌炎症反应 [J]. 中华危重病急救医学, 2019, 31(2): 193-197.
33
Brown RSJr, Lombardero M, Lake JR. Outcome of patients with renal insufficiency undergoing liver or liver-kidney transplantation [J]. Transplantation, 1996, 62(12): 1788-1793.
34
Macedo E, Malhotra R, Claure-Del Granado R, et al. Defining urine output criterion for acute kidney injury in critically ill patients [J]. Nephrol Dial Transplant, 2011, 26(2): 509-515.
35
Cruz DN, Bagshaw SM, Ronco C, et al. Acute kidney injury: classification and staging [J]. Contrib Nephrol, 2010, 164: 24-32.
36
Macedo E, Malhotra R, Bouchard J, et al. Oliguria is an early predictor of higher mortality in critically ill patients [J]. Kidney Int, 2011, 80(7): 760-767.
37
Pabla N, Gibson AA, Buege M, et al. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions [J]. Proc Natl Acad Sci U S A, 2015, 112(16): 5231-5236.
38
Li F, Liu Z, Tang C, et al. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury [J]. FASEB J, 2018, 32(6): 3423-3433.
[1] 冯芳, 陈宇, 杨静, 满珂, 蔡红燕, 李群. ω-3鱼油脂肪乳注射液在脓毒症患者中的应用:前瞻性、随机对照、先导试验[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 136-139.
[2] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[3] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[4] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[5] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[6] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[7] 缪慧, 吴震. 茚达特罗格隆溴铵对COPD患者肺功能和炎症反应的影响[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 852-855.
[8] 李冠东, 梁文启, 孙兴成, 王美堂. 利奈唑胺治疗G肺炎疗效及对免疫功能和炎症反应的影响[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(05): 700-702.
[9] 姜东, 冉龙艳, 雷传江, 徐静. 脓毒症的前世今生及序贯器官衰竭认知及理念[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(05): 605-610.
[10] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[11] 吴宗盛, 谢剑锋, 邱海波. 冷诱导RNA结合蛋白与炎症反应的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 42-47.
[12] 陈雪飞, 卜雄建, 张春良. 神经内镜下经鼻蝶窦扩大鞍底入路颅咽管瘤切除术的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 160-165.
[13] 谢森, 韩轶鹏, 秦至臻, 赵卫良, 毛更生. 脑损伤后慢性炎症反应致巨大占位效应一例报道[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 379-381.
[14] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[15] 王丽丽, 张春霞, 申磊, 吴立娜, 潘青, 冯雪. 吗替麦考酚酯联合雷公藤多苷及糖皮质激素治疗对IgA肾病患者肾功能、炎症因子和氧化应激的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1285-1290.
阅读次数
全文


摘要