切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (11) : 805 -813. doi: 10.3877/cma.j.issn.1674-0785.2021.11.002

述评

转移性结直肠癌免疫检查点抑制剂治疗研究进展
张兰1, 李胜棉1,()   
  1. 1. 050011 石家庄,河北医科大学第四医院消化内科
  • 收稿日期:2021-08-20 出版日期:2021-11-15
  • 通信作者: 李胜棉

Immune checkpoint inhibitors for treatment of metastatic colorectal cancer

Lan Zhang1, Shengmian Li1,()   

  1. 1. Department of Gastroenterology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
  • Received:2021-08-20 Published:2021-11-15
  • Corresponding author: Shengmian Li
引用本文:

张兰, 李胜棉. 转移性结直肠癌免疫检查点抑制剂治疗研究进展[J/OL]. 中华临床医师杂志(电子版), 2021, 15(11): 805-813.

Lan Zhang, Shengmian Li. Immune checkpoint inhibitors for treatment of metastatic colorectal cancer[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(11): 805-813.

免疫检查点抑制剂改变了具有微卫星不稳定的转移性结直肠癌患者的治疗格局,让这部分晚期肠癌患者获得了较常规治疗更高的缓解率及更长的生存时间。但是微卫星不稳定型肿瘤在转移性结直肠癌中仅占到了约5%,而免疫检查点抑制剂对约占95%的微卫星稳定型肿瘤疗效甚微。我们回顾了转移性结直肠癌患者的免疫学特征及免疫检查点抑制剂在微卫星不稳定型转移性结直肠癌患者中的疗效和存在问题,以及在微卫星稳定型转移性结直肠癌中较差的免疫反应性和目前联合治疗探索结果,并进一步总结潜在可以有效筛选免疫检查点抑制剂治疗获益人群的标志物,分析并展望未来免疫相关治疗的机制探索及疗效预测等问题,期望为更多的转移性结直肠癌患者提供有效的免疫治疗方案。

Immune checkpoint inhibitors (ICIs) have changed the treatment pattern in patients with microsatellite instability (MSI) metastatic colorectal cancer (mCRC), and made these patients obtain a higher remission rate and longer overall survival than conventional treatment. However, MSI tumors account for only about 5% of mCRC patients, while ICIs have little effect on about 95% of microsatellite stable tumors. Therefore, we review the immunological characteristics of mCRC patients, the efficacy and problems of ICIs in mCRC patients with MSI, as well as the poor immune reactivity and current results of combination therapy in mCRC patients with microsatellite stability (MSS), summarize the potential markers that can effectively screen the population benefiting from ICI treatment, and analyze the mechanism exploration and efficacy prediction of immune related therapy in the future, hoping to provide effective immunotherapy for more mCRC patients.

1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
2
Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer [J]. Ann Oncol, 2016, 27(8): 1386-1422.
3
Margaret E, Richard RS. Liver-directed therapies in metastatic colorectal cancer [J]. J Gastrointestinal Oncol, 2014, 5(5): 374-387.
4
Lynch HT, de la Chapelle A. Hereditary colorectal cancer [J]. N Engl J Med, 2003, 348(10): 919-932.
5
Boland CR, Goel A. Microsatellite instability in colorectal cancer [J]. Gastroenterology, 2010, 138(6): 2073-2087.
6
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints [J]. Cancer Discov, 2015, 5(1): 43-51.
7
Kloor M, Michel S, Buckowitz B, et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors [J]. Int J Cancer, 2007, 121(2): 454-458.
8
Barrow P, Richman SD, Wallace AJ, et al. Confirmation that somatic mutations of beta-2 microglobulin correlate with a lack of recurrence in a subset of stage Ⅱ mismatch repair deficient colorectal cancers from the QUASAR trial [J]. Histopathology, 2019, 75(2): 236-246.
9
Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study [J]. Lancet, 2018, 391(10135): 2128-2139.
10
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency [J]. N Engl J Med, 2015, 372(26): 2509-2520.
11
Le DT, Uram JN, Wang H, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade [J]. Science, 2017, 357(6349): 409-413.
12
Le DT, Kim TW, Cutsem EV, et al. Phase Ⅱ open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164 [J]. J Clin Oncol, 2020, 38(1): 11-19.
13
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study [J]. Lancet Oncol, 2017, 18(9): 1182-1191.
14
Andre T, Shiu KK, Kim TW, et al. KEYNOTE-177 investigators. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer [J]. N Engl J Med, 2020, 383(23): 2207-2218.
15
Andre T, Shiu KK, Kim TW, et al. Final overall survival for the phase Ⅲ KN177 study: Pembrolizumab versus chemotherapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC) [J]. J Clin Oncol, 2021, 39(15): 3500.
16
Lenz HJ, Lonardi S, Zagonel V, et al. Subgroup analysis of patients(pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC) treated with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy: two-year clinical update [J]. J Clin Oncol, 2021, 39(3): 58.
17
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers [J]. Nat Med, 2020, 26(4): 566-576.
18
Grimaldi A, Cammarata I, Martire C, et al. Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens [J]. Commun Biol, 2020, 3(1): 85-97.
19
Shahda S, Noonan AM, Bekaii-Saab TS, et al. A phase Ⅱ study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer [J]. J Clinl Oncol, 2017, 35(15): 3541.
20
Fumet JD, Isambert N, Hervieu A, et al. Phase Ib/Ⅱ trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer [J]. ESMO Open, 2018, 3(4): e000375.
21
Kim R, Chaves J, Kavan P, et al. Pembrolizumab plus mFOLFOX7 or FOLFIRI in Patients With Metastatic Colorectal Cancer: Updated Results From KEYNOTE-651 Cohorts B and D [J]. Ann Oncol, 2019, 30(5): 229-230.
22
Cremolini C, Rossini D, Antoniotti C, et al. FOLFOXIRI plus bevacizumab (bev) plus atezolizumab (atezo) versus FOLFOXIRI plus bev as fifirst-line treatment of unresectable metastatic colorectal cancer (mCRC) patients: Results of the phase Ⅱ randomized AtezoTRIBE study by GONO [J]. Ann Oncol, 2021, 32(5): 1283-1346.
23
Turgeon GA, Weickhardt A, Azad AA, et al. Radiotherapy and immunotherapy: a synergistic effect in cancer care [J]. Med J Aust, 2019, 210(1): 47-53.
24
Segal NH, Kemeny NE, Cercek A, et al. Non-randomized phase Ⅱstudy to assess the efficacy of pembrolizumab (Pem) plus radiotherapy (RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients [J]. J Clin Oncol, 2016, 34: 3539.
25
Parikh AR, Clark JW, Wo YL, et al. A phase Ⅱ study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC) [J]. J Clin Oncol, 2019, 37: 3514.
26
Hara H, Fukuoka S, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced colorectal or gastric cancer: an open-label, dose-finding, and dose-expansion phase 1b trial (REGONIVO, EPOC1603) [J]. J Clin Oncol, 2020, 38(18) :2053-2061.
27
Fakih M, Pratap K, Chang D, et al. Single-arm,phase 2 study of regorafenib in patients with mismatch repair-proficient (pMMR)/microsatellite stable (MSS) colorectal cancer (CRC) [J]. J Clin Oncol, 2021, 39(15): 3560.
28
Gomez-Roca C, Yanez E, Im SA, et al. LEAP-005: A phase Ⅱ multicohort study of lenvatinib plus pembrolizumab in patients with previously treated selected solid tumors-Results from the colorectal cancer cohort [J]. J Clin Oncol, 2021, 39(3): 94.
29
Martinelli E, Ciardiello D, Martini G, et al. Implementing anti-epidermal growth factor receptor (EGFR) therapy inmetastatic colorectal cancer: Challenges and future perspectives [J]. Ann Oncol, 2020, 31(1): 30-40.
30
Stein A, Binder M, Goekkurt E, et al. Avelumab and cetuximab in combination with FOLFOX in patients with previously untreated metastatic colorectal cancer: Final results of the phase Ⅱ AVETUX trial (AIO-KRK-0216) [J]. J Clin Oncol, 2021, 38: 96.
31
Richard VP, Jens MC, Kenneth AF, et al.CTLA-4 and PD-1 receptors inhibit T-Cell activation by distinct mechanisms [J].Molecular and Cellular Biology, 2005, 25(21): 9543-9553.
32
Chen XY, Jonker DJ, Kennecke HF, et al. CCTG CO.26 trial: a phase Ⅱ randomized study of durvalumab plus tremelimumab and best supportive care (BSC) versus BSC alone in patients with advanced refractory colorectal carcinoma [J]. J Clin Oncol, 2021, 37(4): 481.
33
Galbraith NJ, Wood C, Steele CW. Targeting Metastatic Colorectal Cancer with Immune Oncological Therapies [J]. Cancers (Basel), 2021, 13(14): 3566.
34
McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade [J]. Science, 2016, 351(6280): 1463-1469.
35
Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma [J]. N Engl J Med, 2014, 371(23): 2189-2199.
36
Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study [J]. Lancet Oncol, 2020, 21(10): 1353-1365.
37
Fabrizio DA, George TJ, Dunne RF, et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition [J]. J Gastrointest Oncol, 2018, 9(4): 610-617.
38
张琪, 李健. 结直肠癌免疫治疗生物标志物研究进展 [J/OL]. 肿瘤综合治疗电子杂志, 2020, 6(2): 20-24.
39
McGrail DJ, Pilie PG, Rashid NU, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types [J]. Ann Oncol, 2021, 32(5): 661-672.
40
Wang F, Zhao Q, Wang YN, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types [J]. JAMA Oncol, 2019, 5(10): 1504-1506.
41
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer [J]. Science, 2015, 348(6230): 124-128.
42
He J, Ouyang W, Zhao W, et al. Distinctive genomic characteristics in POLE/POLD1-mutant cancers can potentially predict beneficial clinical outcomes in patients who receive immune checkpoint inhibitor [J]. Ann Transl Med, 2021, 9(2): 129.
43
Angell H, Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer [J]. Curr Opin Immunol, 2013, 25(2): 261-267.
44
Ko YS, Pyo JS. Clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer [J]. Int J Biol Markers, 2019, 34(2) : 132-138.
45
Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade [J]. J Clin Invest, 2017, 127(8): 2930-2940.
46
Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy [J]. Science, 2018, 362(6411): eaar3593.
47
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota [J]. Science, 2015, 350(6264): 1079-1084.
48
Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab [J]. Ann Oncol, 2017, 28(6): 1368-1379.
49
Gopalakrishnan V, Spencer CN, Wargo JA, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients [J]. Science, 2018, 359(6371): 97-103.
50
Yi M, Qin S, Chu Q, et al. The role of gut microbiota in immune checkpoint inhibitor therapy [J]. Hepatobiliary Surg Nutr, 2018, 7(6): 481-483.
51
Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer [J]. Nature, 2002, 417(6892): 949-954.
52
Park R, Silva LL, Lee S, et al. Impact of BRAF mutations on the prognosis and immunotherapy response in microsatellite instability/mismatch repair deficient metastatic colorectal cancer: A systematic review and metaanalysis [J]. J Clin Oncol, 2021, 39(15): 3557.
53
Kopetz S, Andre T, Overman MJ, et al. Abstract 2603: Exploratory analysis of Janus kinase 1 (JAK1) loss-of-function (LoF) mutations in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC) treated with nivolumab + ipilimumab in CheckMate-142 [J]. Clin Res, 2018, 78 (13): 2603.
54
Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma [J]. N Engl J Med, 2016, 375(9): 819-829.
55
Llosa NJ, Luber B, Siegel N, et al. Immunopathologic stratification of colorectal cancer for checkpoint blockade immunotherapy [J].Cancer Immunol Res, 2019, 7(10): 1574-1579.
[1] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[2] 袁庆港, 刘理想, 张亮, 周世振, 高波, 丁超, 管文贤. 尿素-肌酐比值(UCR)可预测结直肠癌患者术后的长期预后[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 506-509.
[3] 艾贵生, 杨健, 蒋文涛. 肝移植治疗不可切除结直肠癌肝转移的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 174-180.
[4] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[5] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[6] 宋华传, 季鹏, 姚焕章, 王永帅, 张珅瑜, 宋瑞鹏, 王继洲. 腹腔镜肝切除术联合微波消融治疗多发性结直肠癌肝转移[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 222-226.
[7] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[8] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[9] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[10] 张金珠, 梅世文, 孙金峰, 胡刚, 邱文龙, 李国利, 汪欣, 王锡山, 汤坚强. 原发结直肠癌超系膜切除术后患者的生存危险因素分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 197-204.
[11] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[12] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[13] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[14] 高静, 夏婷婷. 血清乳酸脱氢酶、中性粒细胞/淋巴细胞比值、血浆纤维蛋白原/前白蛋白比值对晚期结直肠癌患者姑息化疗效果与不良反应的评价[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 203-207.
[15] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
阅读次数
全文


摘要