1 |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer [J]. Ann Oncol, 2016, 27(8): 1386-1422.
|
3 |
Margaret E, Richard RS. Liver-directed therapies in metastatic colorectal cancer [J]. J Gastrointestinal Oncol, 2014, 5(5): 374-387.
|
4 |
Lynch HT, de la Chapelle A. Hereditary colorectal cancer [J]. N Engl J Med, 2003, 348(10): 919-932.
|
5 |
Boland CR, Goel A. Microsatellite instability in colorectal cancer [J]. Gastroenterology, 2010, 138(6): 2073-2087.
|
6 |
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints [J]. Cancer Discov, 2015, 5(1): 43-51.
|
7 |
Kloor M, Michel S, Buckowitz B, et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors [J]. Int J Cancer, 2007, 121(2): 454-458.
|
8 |
Barrow P, Richman SD, Wallace AJ, et al. Confirmation that somatic mutations of beta-2 microglobulin correlate with a lack of recurrence in a subset of stage Ⅱ mismatch repair deficient colorectal cancers from the QUASAR trial [J]. Histopathology, 2019, 75(2): 236-246.
|
9 |
Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study [J]. Lancet, 2018, 391(10135): 2128-2139.
|
10 |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency [J]. N Engl J Med, 2015, 372(26): 2509-2520.
|
11 |
Le DT, Uram JN, Wang H, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade [J]. Science, 2017, 357(6349): 409-413.
|
12 |
Le DT, Kim TW, Cutsem EV, et al. Phase Ⅱ open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164 [J]. J Clin Oncol, 2020, 38(1): 11-19.
|
13 |
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study [J]. Lancet Oncol, 2017, 18(9): 1182-1191.
|
14 |
Andre T, Shiu KK, Kim TW, et al. KEYNOTE-177 investigators. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer [J]. N Engl J Med, 2020, 383(23): 2207-2218.
|
15 |
Andre T, Shiu KK, Kim TW, et al. Final overall survival for the phase Ⅲ KN177 study: Pembrolizumab versus chemotherapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC) [J]. J Clin Oncol, 2021, 39(15): 3500.
|
16 |
Lenz HJ, Lonardi S, Zagonel V, et al. Subgroup analysis of patients(pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC) treated with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy: two-year clinical update [J]. J Clin Oncol, 2021, 39(3): 58.
|
17 |
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers [J]. Nat Med, 2020, 26(4): 566-576.
|
18 |
Grimaldi A, Cammarata I, Martire C, et al. Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens [J]. Commun Biol, 2020, 3(1): 85-97.
|
19 |
Shahda S, Noonan AM, Bekaii-Saab TS, et al. A phase Ⅱ study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer [J]. J Clinl Oncol, 2017, 35(15): 3541.
|
20 |
Fumet JD, Isambert N, Hervieu A, et al. Phase Ib/Ⅱ trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer [J]. ESMO Open, 2018, 3(4): e000375.
|
21 |
Kim R, Chaves J, Kavan P, et al. Pembrolizumab plus mFOLFOX7 or FOLFIRI in Patients With Metastatic Colorectal Cancer: Updated Results From KEYNOTE-651 Cohorts B and D [J]. Ann Oncol, 2019, 30(5): 229-230.
|
22 |
Cremolini C, Rossini D, Antoniotti C, et al. FOLFOXIRI plus bevacizumab (bev) plus atezolizumab (atezo) versus FOLFOXIRI plus bev as fifirst-line treatment of unresectable metastatic colorectal cancer (mCRC) patients: Results of the phase Ⅱ randomized AtezoTRIBE study by GONO [J]. Ann Oncol, 2021, 32(5): 1283-1346.
|
23 |
Turgeon GA, Weickhardt A, Azad AA, et al. Radiotherapy and immunotherapy: a synergistic effect in cancer care [J]. Med J Aust, 2019, 210(1): 47-53.
|
24 |
Segal NH, Kemeny NE, Cercek A, et al. Non-randomized phase Ⅱstudy to assess the efficacy of pembrolizumab (Pem) plus radiotherapy (RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients [J]. J Clin Oncol, 2016, 34: 3539.
|
25 |
Parikh AR, Clark JW, Wo YL, et al. A phase Ⅱ study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC) [J]. J Clin Oncol, 2019, 37: 3514.
|
26 |
Hara H, Fukuoka S, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced colorectal or gastric cancer: an open-label, dose-finding, and dose-expansion phase 1b trial (REGONIVO, EPOC1603) [J]. J Clin Oncol, 2020, 38(18) :2053-2061.
|
27 |
Fakih M, Pratap K, Chang D, et al. Single-arm,phase 2 study of regorafenib in patients with mismatch repair-proficient (pMMR)/microsatellite stable (MSS) colorectal cancer (CRC) [J]. J Clin Oncol, 2021, 39(15): 3560.
|
28 |
Gomez-Roca C, Yanez E, Im SA, et al. LEAP-005: A phase Ⅱ multicohort study of lenvatinib plus pembrolizumab in patients with previously treated selected solid tumors-Results from the colorectal cancer cohort [J]. J Clin Oncol, 2021, 39(3): 94.
|
29 |
Martinelli E, Ciardiello D, Martini G, et al. Implementing anti-epidermal growth factor receptor (EGFR) therapy inmetastatic colorectal cancer: Challenges and future perspectives [J]. Ann Oncol, 2020, 31(1): 30-40.
|
30 |
Stein A, Binder M, Goekkurt E, et al. Avelumab and cetuximab in combination with FOLFOX in patients with previously untreated metastatic colorectal cancer: Final results of the phase Ⅱ AVETUX trial (AIO-KRK-0216) [J]. J Clin Oncol, 2021, 38: 96.
|
31 |
Richard VP, Jens MC, Kenneth AF, et al.CTLA-4 and PD-1 receptors inhibit T-Cell activation by distinct mechanisms [J].Molecular and Cellular Biology, 2005, 25(21): 9543-9553.
|
32 |
Chen XY, Jonker DJ, Kennecke HF, et al. CCTG CO.26 trial: a phase Ⅱ randomized study of durvalumab plus tremelimumab and best supportive care (BSC) versus BSC alone in patients with advanced refractory colorectal carcinoma [J]. J Clin Oncol, 2021, 37(4): 481.
|
33 |
Galbraith NJ, Wood C, Steele CW. Targeting Metastatic Colorectal Cancer with Immune Oncological Therapies [J]. Cancers (Basel), 2021, 13(14): 3566.
|
34 |
McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade [J]. Science, 2016, 351(6280): 1463-1469.
|
35 |
Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma [J]. N Engl J Med, 2014, 371(23): 2189-2199.
|
36 |
Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study [J]. Lancet Oncol, 2020, 21(10): 1353-1365.
|
37 |
Fabrizio DA, George TJ, Dunne RF, et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition [J]. J Gastrointest Oncol, 2018, 9(4): 610-617.
|
38 |
张琪, 李健. 结直肠癌免疫治疗生物标志物研究进展 [J/OL]. 肿瘤综合治疗电子杂志, 2020, 6(2): 20-24.
|
39 |
McGrail DJ, Pilie PG, Rashid NU, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types [J]. Ann Oncol, 2021, 32(5): 661-672.
|
40 |
Wang F, Zhao Q, Wang YN, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types [J]. JAMA Oncol, 2019, 5(10): 1504-1506.
|
41 |
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer [J]. Science, 2015, 348(6230): 124-128.
|
42 |
He J, Ouyang W, Zhao W, et al. Distinctive genomic characteristics in POLE/POLD1-mutant cancers can potentially predict beneficial clinical outcomes in patients who receive immune checkpoint inhibitor [J]. Ann Transl Med, 2021, 9(2): 129.
|
43 |
Angell H, Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer [J]. Curr Opin Immunol, 2013, 25(2): 261-267.
|
44 |
Ko YS, Pyo JS. Clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer [J]. Int J Biol Markers, 2019, 34(2) : 132-138.
|
45 |
Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade [J]. J Clin Invest, 2017, 127(8): 2930-2940.
|
46 |
Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy [J]. Science, 2018, 362(6411): eaar3593.
|
47 |
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota [J]. Science, 2015, 350(6264): 1079-1084.
|
48 |
Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab [J]. Ann Oncol, 2017, 28(6): 1368-1379.
|
49 |
Gopalakrishnan V, Spencer CN, Wargo JA, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients [J]. Science, 2018, 359(6371): 97-103.
|
50 |
Yi M, Qin S, Chu Q, et al. The role of gut microbiota in immune checkpoint inhibitor therapy [J]. Hepatobiliary Surg Nutr, 2018, 7(6): 481-483.
|
51 |
Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer [J]. Nature, 2002, 417(6892): 949-954.
|
52 |
Park R, Silva LL, Lee S, et al. Impact of BRAF mutations on the prognosis and immunotherapy response in microsatellite instability/mismatch repair deficient metastatic colorectal cancer: A systematic review and metaanalysis [J]. J Clin Oncol, 2021, 39(15): 3557.
|
53 |
Kopetz S, Andre T, Overman MJ, et al. Abstract 2603: Exploratory analysis of Janus kinase 1 (JAK1) loss-of-function (LoF) mutations in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC) treated with nivolumab + ipilimumab in CheckMate-142 [J]. Clin Res, 2018, 78 (13): 2603.
|
54 |
Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma [J]. N Engl J Med, 2016, 375(9): 819-829.
|
55 |
Llosa NJ, Luber B, Siegel N, et al. Immunopathologic stratification of colorectal cancer for checkpoint blockade immunotherapy [J].Cancer Immunol Res, 2019, 7(10): 1574-1579.
|