切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (04) : 372 -375. doi: 10.3877/cma.j.issn.1674-0785.2022.04.015

综述

慢性低氧环境下微血管增生的生理机制及病理生理学特征
殷志颖1, 马四清2,()   
  1. 1. 810000 西宁,青海大学研究生院
    2. 810000 西宁,青海省人民医院重症医学科
  • 收稿日期:2021-05-28 出版日期:2022-04-15
  • 通信作者: 马四清
  • 基金资助:
    青海省重点研发与转化计划(2019-SF-1322)

Physiological mechanism and pathophysiological characteristics of microangiogenesis in chronic hypoxia

Zhiying Yin1, Siqing Ma2,()   

  1. 1. Graduate School of Qinghai University, Xining 810000, China
    2. Intensive Care Unit, Qinghai province people's hospital, Xining 810000, China
  • Received:2021-05-28 Published:2022-04-15
  • Corresponding author: Siqing Ma
引用本文:

殷志颖, 马四清. 慢性低氧环境下微血管增生的生理机制及病理生理学特征[J]. 中华临床医师杂志(电子版), 2022, 16(04): 372-375.

Zhiying Yin, Siqing Ma. Physiological mechanism and pathophysiological characteristics of microangiogenesis in chronic hypoxia[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(04): 372-375.

长期慢性低氧可通过多种机制促进微血管增生,其目的是增强血液与组织液的有效交换,保证氧输送,这是机体适应低氧环境的一种生理机制。但当机体遭受严重创伤、感染、缺氧等各种应激时,这种微血管增生可能伴有不利的角色,在疾病早期机体可能易发生低血容量性休克,随着疾病发展和不恰当的医疗干预,易发生毛细血管渗漏,出现器官及组织水肿,加重病情,此时,机体可能具有特殊的病理生理。本文阐述慢性低氧环境下微血管增生的生理机制,探讨其可能的病理生理临床特征,利于临床治疗的准确实施。

Long-term chronic hypoxia can promote microangiogenesis through a variety of mechanisms to enhance the effective exchange of blood and tissue fluid and ensure oxygen transport, which is a physiological mechanism for the body to adapt to hypoxic environment. However, when the body suffers from various stresses such as severe trauma, infection, and hypoxia, microvascular hyperplasia may play adverse roles, and hypovolemic shock may occur in the early stage of the disease. With the development of the disease and inappropriate medical intervention, it is easy to develop capillary leakage and organ and tissue edema, thus aggravating the disease. At this time, the body may have special pathophysiology. This paper describes the physiological mechanism of microangiogenesis in chronic hypoxic environment and discusses its possible pathophysiological and clinical characteristics, which is beneficial to the accurate implementation of clinical treatment.

4
Si-Qing MA, Shao-Hua P, Zong-Zhao HE, et al. Changes of microcirculation in healthy volunteers and patients with septic shock in Xining [J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2016, 32(6): 533-539.
5
Simonson TS. Altitude adaptation: a glimpse through various lenses [J]. High Alt Med Biol, 2015, 16(2): 125-137.
6
Ai L, Lin S, Huang C, et al. Simultaneous interference of SP1 and HIF1α retarding the proliferation, migration, and invasion of human microvascular endothelial cells (HMEC-1) under hypoxia [J]. J Cell Biochem, 2019, 120: 17912-17925.
7
Wang S, Lu J, You Q, et al. The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth [J]. Oncotarget, 2016, 7(33): 53269-53276.
8
Choi HJ, Kim NE, Kwon I, et al. Fc-saxatilin inhibits VEGF-induced permeability by regulating claudin-5 expression in human brain microvascular endothelial cells [J]. Microvasc Res, 2020, 128: 103953.
9
Arima M, Nakao S, Yamaguchi M, et al. Claudin-5 redistribution induced by inflammation leads to anti-VEGF-resistant diabetic macular edema [J]. Diabetes, 2020, 69(5): 981-999.
10
Mo L, Xu G, Wu C, et al. HIF-1α/VEGFAKey regulatory effect of activated signaling pathway in systemic capillary leak syndrome confirmed by bioinformatics analysis [J]. J Comput Biol, 2020, 27(6): 914-922.
11
Siddall E, Khatri M, Radhakrishnan J. Capillary leak syndrome: etiologies, pathophysiology, and management [J]. Kidney Int, 2017, 92(1): 37-46.
12
李琳, 赵静. 低氧信号通路研究进展概述-2019年诺贝尔生理学或医学奖解读 [J]. 生物学教学, 2020, 45(6): 2-4.
13
Lee M, Wang C, Jin SW, et al. Expression of human inducible nitric oxide synthase in response to cytokines is regulated by hypoxia-inducible factor-1 [J]. Free Radic Biol Med, 2019, 130: 278-287.
14
Li YN, Wang XJ, Li B, et al. Tongxinluo inhibits cyclooxygenase-2, inducible nitric oxide synthase, hypoxia-inducible factor-2α/vascular endothelial growth factor to antagonize injury in hypoxia-stimulated cardiac microvascular endothelial cells [J]. Chin Med J (Engl), 2015, 128(8): 1114-1120.
15
Mel'nikova NN, Baranova EV, Aleksandrova NP. Participation of no-dependent mechanisms in the effects of increased systemic level of interleukin-1β on pial microvessels under conditions of acute hypoxia [J]. Bull Exp Biol Med, 2020, 170(1): 1-4.
16
Liu N, Zou Z, Liu J, et al. A fluorescent nanoprobe based on azoreductase-responsive metal-organic frameworks for imaging VEGF mRNA under hypoxic conditions [J]. Analyst, 2019, 144: 6254-6261.
17
陆宗庆, 刘瑜, 郑瑶, 等. 2000至2019年休克和脓毒症微循环领域研究进展: 基于知识 可视化分析 [J]. 中华危重病急救医学, 2020, 32(3): 287-293.
18
Loftus TJ, Thomson AJ, Kannan KB, et al. Effects of trauma, hemorrhagic shock, and chronic stress on lung vascular endothelial growth factor [J]. J Surg Res, 2017, 210: 15-21.
19
Billin AN, Honeycutt SE, McDougal AV, et al. HIF prolyl hydroxylase inhibition protects skeletal muscle from eccentric contraction-induced injury [J]. Skelet Muscle, 2018, 8(1): 35.
20
Colombo R, Wu MA, Catena E, et al. The role of failing autonomic nervous system on life-threatening idiopathic systemic capillary leak syndrome [J]. Front Med (Lausanne), 2018, 5: 111.
21
Zhao J, You G, Wang B, et al. Hypotensive resuscitation with hypertonic saline dextran improves survival in a rat model of hemorrhagic shock at high altitude [J]. Shock, 2017, 48(2): 196-200.
22
孙庆文, 谢碧芳, 梁微波, 等. 急性呼吸窘迫综合征血流动力学管理: 聚焦液体管理 [J]. 中华重症医学电子杂志, 2016, 2(4): 291-294.
23
Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation [J]. J Appl Physiol, 2016, 120(2): 226-235.
24
Yuan J, Yang X, Yuan Q, et al. Systematic review of ultrasound-guided fluid resuscitation vs early goal-directed therapy in patients with septic shock [J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2020, 32(1): 56-61.
25
李文哲, 肖雅文, 于湘友. 重症患者的液体治疗: 藏器待时而动 [J]. 中华卫生应急电子杂志, 2020, 6(2): 109-111.
26
马四清, 罗勇军. 高原急性呼吸窘迫综合征诊断与治疗进展 [J]. 第三军医大学学报, 2019, 41(8): 729-733.
27
Zhao H, Zhu Y, Zhang J, et al. The beneficial effect of HES on vascular permeability and its relationship with endothelial glycocalyx and intercellular junction after hemorrhagic shock [J]. Front Pharmacol, 2020, 11: 597.
28
Allen JM, Feild C, Shoulders BR, et al. Recent updates in the pharmacological management of sepsis and septic shock: a systematic review focused on fluid resuscitation, vasopressors, and corticosteroids [J]. Ann Pharmacother, 2019, 53(4): 385-395.
1
Martin DS, Gilbert-Kawai E, Levett DZh, et al. Xtreme everest 2: unlocking the secrets of the Sherpa phenotype? [J]. Extrem Physiol Med, 2013, 2(1): 30.
2
Zhu M, Yang M, Yang Q, et al. Chronic hypoxia-induced microvessel proliferation and basal membrane degradation in the bone marrow of rats regulated through the IL-6/JAK2/STAT3/MMP-9 pathway [J]. Biomed Res Int, 2020, 2020: 9204708.
3
Gilbert-Kawai E, Coppel J, Phillip H, et al. Changes in labial capillary density on ascent to and descent from high altitude [J]. F1000Res, 2016, 5: 2107.
[1] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[2] 王丽萍, 徐磊, 蒋天安, 强嘉璘. 微血管成像联合Qpack定量分析技术评估慢性肾脏病患者肾皮质区血流灌注的价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 292-296.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[5] 李勇, 全勇, 傅仕艳, 冉新泽, 唐红, 柳随义, 李杰, 舒畅, 陈用来, 张静, 杨冰冰, 郝玉徽. 低氧环境对小鼠急性放射损伤的影响[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 299-305.
[6] 王兴, 张峰伟. 腹腔镜肝切除联合断面射频消融治疗伴微血管侵犯肝细胞癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 580-583.
[7] 潘玮瑄, 郝少龙, 韩威. 低氧微环境与实体恶性肿瘤m6A修饰的研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 461-464.
[8] 汪俊谷, 潘华琴, 杨雨田. HFNC治疗急性低氧性呼吸衰竭插管预后及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 523-525.
[9] 陈趟, 王艺萱, 吴刚. 单肺通气术中低氧血症与术后肺部并发症的关系及其预测意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 355-357.
[10] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[11] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[12] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[13] 王永楠, 王启弘, 殷杰, 欧春影. 锁孔开颅微血管减压术治疗前庭阵发症的初步研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 43-47.
[14] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[15] 曹宾, 郭瑛, 夏盼盼, 刘佳榛, 王骏, 孙育民. 非阵发性心房颤动的治疗策略:来自心脏电生理一线医师的问卷调查[J]. 中华心脏与心律电子杂志, 2023, 11(03): 147-153.
阅读次数
全文


摘要