切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (04) : 438 -445. doi: 10.3877/cma.j.issn.1674-0785.2023.04.013

基础研究

基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点
张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉()   
  1. 010050 呼和浩特,内蒙古医科大学附属医院超声科
  • 收稿日期:2022-10-25 出版日期:2023-04-15
  • 通信作者: 张小杉
  • 基金资助:
    中央引导地方科技发展资金项目(2021ZY0026); 内蒙古自治区教育厅“高校青年科技英才”项目(NJYT22021); 内蒙古自治区自然科学基金面上项目(2022SHZR1847); 内蒙古自治区医疗卫生健康科技计划项目(202201310)

Bioinformatics screening of potential pathways and targets related to myocardial ischemia-reperfusion injury in rats based on GEO database

Minjie Zhang, Yaxi Wang, Shasha Duan, Yilu Shi, Wenyan Fu, haiyue Zhao, Xiaoshan Zhang()   

  1. Department of Ultrasound, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
  • Received:2022-10-25 Published:2023-04-15
  • Corresponding author: Xiaoshan Zhang
引用本文:

张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.

Minjie Zhang, Yaxi Wang, Shasha Duan, Yilu Shi, Wenyan Fu, haiyue Zhao, Xiaoshan Zhang. Bioinformatics screening of potential pathways and targets related to myocardial ischemia-reperfusion injury in rats based on GEO database[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(04): 438-445.

目的

基于基因表达数据库(GEO)运用生物信息学分析筛选与大鼠心肌缺血再灌注损伤(MIRI)相关的关键基因(Hub gene)、通路及候选药物。

方法

从GEO数据库下载大鼠GSE122020数据集并利用GEO2R在线工具筛选差异表达基因(DEGs)。通过基因本体(GO)注释和京都基因和基因组百科全书(KEGG)通路分析研究MIRI相关DEGs涉及的病理生理过程和潜在的信号通路。使用STRING等数据库构建MIRI相关DEGs蛋白-蛋白相互作用(PPI)网络并筛选PPI网络中关键基因并使用Cytoscape软件进行可视化分析。利用Enrichr数据库筛选关键基因的潜在候选药物。

结果

共筛选出377个差异基因,其中109个上调、268个下调;KEGG通路富集分析显示,上调的109个基因富集到包括Janus激酶-信号转导及转录启动蛋白(JAK-STAT signaling pathway)等在内的6条通路;下调的268个基因富集到包括肿瘤坏死因子(TNF)等在内的58条通路。STRING和Gene MANIA数据库与Cytoscape软件联合分析筛选到20个关键DEGs,其中,上调的4个基因通过Enrichr数据库中的DSigDB数据库预测到包括烟酸、槲皮素等在内的55个潜在药物,下调的16个基因预测到包括3,3′-二吲哚基甲烷、重铬酸钾等在内的92个潜在药物。

结论

通过生物信息学方法,可以有效挖掘MIRI的致病基因,为进一步探讨MIRI的分子机制和治疗靶点提供新的思路和切入点。

Objective

To screen key genes (Hub genes), pathways, and drug candidates related to myocardial ischemia-reperfusion injury (MIRI) in rats by bioinformatics analysis based on the gene expression omnibus (GEO) database.

Methods

The rat GSE122020 dataset was downloaded from the GEO database and differentially expressed genes (DEGs) were screened using the GEO2R online tool. Pathophysiological processes and potential signaling pathways involved in MIRI-related DEGs were investigated by Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The MIRI-related DEGs protein-protein interaction (PPI) network was constructed using databases such as STRING, and the key genes in the PPI network were screened and visualized using Cytoscape software. Potential drug candidates for key genes were screened using the Enrichr database.

Results

A total of 377 differential genes were screened, of which 109 were up-regulated and 268 down-regulated. KEGG pathway enrichment analysis showed that the up-regulated 109 genes were enriched in six pathways including the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, while the 268 down-regulated genes were enriched in 58 pathways including the tumor necrosis factor (TNF) signaling pathway. Combined analysis based on the STRING and Gene MANIA databases and Cytoscape software resulted in the identification of 20 key DEGs, of which 4 were up-regulated and 16 down-reglated. For the 4 up-regulated genes, 55 potential drugs including nicotinic acid and quercetin were predicted based on the DSigDB database in the Enrichr database, while for the 16 down-regulated genes, 92 potential drugs including 3,3'-diindolylmethane and potassium dichromate were predicted.

Conclusion

Through bioinformatics methods, the pathogenic genes of MIRI can be effectively discovered, which provides new ideas and entry points for further exploring the molecular mechanism and therapeutic targets for MIRI.

图1 差异表达基因火山图。红色为上调基因;蓝色为下调基因
图2 DEGs的GO和KEGG功能富集分析。图a为109个基因的GO富集分析结果(p.adj<0.1 & qvalue<0.2),分别选取BP、CC、MF三个层面的前4个结果进行气泡图展示;图b为268个下调基因的GO富集分析结果(p.adj<0.1 & qvalue<0.2),分别选取BP、CC、MF三个层面的前4个结果进行气泡图展示;图c为109个上调基因的KEGG富集分析结果(p.adj<0.1 & qvalue<0.2),选取前5个结果进行网络图展示;图d为268个下调基因的KEGG富集分析结果(p.adj<0.1 & qvalue<0.2),选取前5个结果进行网络图展示
图3 Hub基因的PPI网络图。图a为得分前20个Hub基因,其中上调基因4个,下调基因16个;图b为得分前20 Hub基因的PPI网络图,共计188条边,20个节点;图c、d为得分前20 Hub基因的相关分子关系网络图
图4 Hub基因的潜在候选药物。图a为4个上调基因预测的前10位的潜在候选药物;图b为16个下调基因预测的前10位的潜在候选药物
1
Zheng J, Chen P, Zhong J, et al. HIF-1α in myocardial ischemia-reperfusion injury (Review) [J]. Mol Med Rep, 2021, 23(5): 352.
2
Wang K, Li Y, Qiang T, et al. Role of epigenetic regulation in myocardial ischemia/reperfusion injury [J]. Pharmacol Res, 2021, 170:105743
3
Wang K, Li Y, Qiang T, et al. Gene expression profiling analysis to investigate the role of remote ischemic postconditioning in ischemia-reperfusion injury in rats [J]. BMC genomics, 2019, 20(1): 361.
4
Chen M, Li X, Yang H, et al. Hype or hope: vagus nerve stimulation against acute myocardial ischemia-reperfusion injury [J]. Trends Cardiovasc Med, 2020, 30(8): 481-488.
5
Shen Y, Liu X, Shi J, et al. Involvement of Nrf2 in myocardial ischemia and reperfusion injury [J]. Int J Biol Macromol, 2019, 125: 496-502.
6
Mardis ER. Next-generation DNA sequencing methods [J]. Annu Rev Genomics Hum Genet, 2008, 9: 387-402.
7
杨帅. 面向组学大数据的生物信息学研究 [D]. 北京: 中国人民解放军军事医学科学院, 2016.
8
何远, 张丽娜, 朱兴文. 大数据技术在生物信息学中的应用综述 [J]. 软件导刊, 2016, 15(4): 147-148.
9
Giorgi FM, Ceraolo C, Mercatelli D. The R language: an engine for bioinformatics and data science [J]. Life (Basel), 2022, 12(5).
10
邱秀文, 吴小芹, 黄麟, 等. 基因芯片技术在生物研究中的应用进展 [J]. 江苏农业科学, 2014, 42(5): 60-62.
11
Zhao WK, Zhou Y, Xu TT, et al. Ferroptosis: opportunities and challenges in myocardial ischemia-reperfusion injury [J]. Oxid Med Cell Longev, 2021, 2021: 9929687.
12
王欣凯, 王硕. 探究生物信息学的研究进展 [J]. 科技资讯, 2020, 18(14): 228-229.
13
马骏骏, 王旭初, 聂小军. 生物信息学在蛋白质组学研究中的应用进展 [J]. 生物信息学, 2021, 19(2): 85-91.
14
川崎病冠状动脉病变的临床处理建议(2020年修订版) [J]. 中华儿科杂志, 2020, 58(9): 718-724.
15
Li Q, Xia B, Wu J, et al. Indole-3-carbinol (I3C) protects the heart from ischemia/reperfusion injury by inhibiting oxidative stress, inflammation, and cellular apoptosis in mice [J]. Front Pharmacol, 2022, 13: 924174.
16
Li Q, Xia B, Wu J, et al. Silencing MR-1 protects against myocardial injury induced by chronic intermittent hypoxia by targeting Nrf2 through antioxidant stress and anti-inflammation pathways [J]. Front Pharmacol, 2022, 13: 924174..
17
郭梅, 罗波, 阮丹, 等. 心肌缺血再灌注损伤中白介素-17A诱发心肌细胞凋亡的作用机制 [J]. 免疫学杂志, 2019, 35(10): 846-852.
18
李翔子. 富氢水对大鼠离体心肌缺血再灌注损伤后MAPK-ERK1/2和JAK-STAT信号通路的影响 [D]. 保定: 河北大学, 2019.
19
He J, Liu D, Zhao L, et al. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (Review) [J]. Exp Ther Med, 2022, 23(6): 430.
20
陈浣洁, 邹燕, 雷琎, 等. 心肌缺血再灌注损伤中Jak/Stat信号通路的研究进展 [J]. 农垦医学, 2022, 44(2): 136-141.
21
Zhang L, Wang X, Zhang H, et al. Exercise-induced peptide EIP-22 protect myocardial from ischaemia/reperfusion injury via activating JAK2/STAT3 signalling pathway [J]. J Cell Mol Med, 2021, 25(7): 3560-3572.
22
赖海标, 孟繁甦, 曾建峰, 等. 基于网络药理学研究新冠1号方治疗新型冠状病毒肺炎的作用机制 [J]. 现代医院, 2022, 22(8): 1299-1305.
23
张世鹰, 李卫青, 李玲, 等. 基于系统药理学和分子对接解析湘NCP2方防治新冠肺炎的作用机制 [J]. 中成药, 2022, 44(1): 255-63.
24
Wu Y, Kang L, Guo Z, et al. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis [J]. JAMA network open, 2022, 5(8): e2228008.
25
Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study [J]. Intensive Care Med, 2020, 46(6): 1089-1098.
26
Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19 [J]. J Thromb Haemost: JTH, 2020, 18(6): 1517-1519.
27
Vivan MA, Rigatti B, da Cunha SV, et al. Pulmonary embolism in patients with COVID-19 and D-dimer diagnostic value: A retrospective study [J]. Braz J Infect Dis, 2022, 26(6): 102702.
28
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China [J]. Kidney Int, 2020, 98(1): 219-227.
29
AlShahrani I, Hosmani J, Shankar VG, et al. Covid-19 and the cardiovascular system: a comprehensive review [J]. Rev Cardiovasc Med, 2021, 35(1): 4-11.
30
Parry AH, Wani AH, Yaseen M. Acute mesenteric ischemia in severe Coronavirus-19 (COVID-19): possible mechanisms and diagnostic pathway [J]. Acad Radiol, 2020, 27(8): 1190.
31
何亚磊, 蔡叶锐, 魏引, 等. 基于NF-κB通路研究槲皮素对心肌缺血再灌注损伤大鼠的影响 [J]. 中医学报, 2021, 36(7): 1491-1496.
32
Ferreira-Silva M, Faria-Silva C, Carvalheiro MC, et al. Quercetin liposomal nanoformulation for ischemia and reperfusion injury treatment [J]. Pharmaceutics, 2022, 14(1): 104.
33
娄原, 姜雅楠, 徐浩群, 等. 槲皮素抗脑缺血再灌注损伤作用机制研究进展 [J]. 中国实验方剂学杂志, 2022, 28(17): 248-257.
34
张远恒, 马业新. 烟酸对缺血/再灌注损伤大鼠心肌细胞凋亡及Bax、Bcl-2和Fas表达的影响 [J]. 现代中西医结合杂志, 2010, 19(14): 1713-1716, 1743.
[1] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[2] 张圣平, 邓琼, 张颖, 张建文, 梁辉, 王铸. 孤儿核受体HNF4α在肾透明细胞癌中的表达及意义[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 627-632.
[3] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[4] 邱静, 黄庆. HJURP在肺腺癌组织中高表达并与患者不良预后相关性[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 495-499.
[5] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[6] 杨硕, 马洪明, 关晓婷, 陈正贤. EGLN3在肺腺癌中表达的Meta分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 31-38.
[7] 李一然, 王玉秀, 朱研, 王梦, 刘颖, 闫文锦, 徐兴祥, 闵凌峰. 基于GEO数据库分析影响纳武单抗及派姆单抗治疗非小细胞肺癌疗效的差异基因[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 20-25.
[8] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[9] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[10] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[11] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[12] 许航, 崔宇韬, 任广凯, 刘贺, 王雁冰, 彭传刚, 吴丹凯. 骨质疏松症关键基因的筛选及生物信息学分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 18-22.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[15] 华杨, 孙劲禹, 程晨, 邢子琳, 盛燕辉, 孔祥清, 孙伟. 肥厚型心肌病的关键基因:一项基于加权基因共表达网络的分析[J]. 中华心脏与心律电子杂志, 2023, 11(01): 32-38.
阅读次数
全文


摘要