切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (08) : 884 -890. doi: 10.3877/cma.j.issn.1674-0785.2023.08.007

基础研究

敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响
王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英()   
  1. 050010 石家庄,河北医科大学第四医院外二科
    050010 石家庄,河北医科大学第四医院外二科;050061 石家庄,河北医科大学第二医院
  • 收稿日期:2022-01-03 出版日期:2023-08-15
  • 通信作者: 王贵英
  • 基金资助:
    河北省医学科学研究课题计划(20210054)

Effect of IMPDH1 knockdown on biological behavior of human colon cancer SW480 and HT29 cells

Feifei Wang, Guanglin Wang, Zesong Meng, Baokun Li, Longfei Cao, Juan Zhang, Chaoxi Zhou, Yuanyi Ding, Guiying Wang()   

  1. The Second Department of General Surgery, The Fourth Hospital, Hebei Medical University, Shijiazhuang 050010, China
    The Second Department of General Surgery, The Fourth Hospital, Hebei Medical University, Shijiazhuang 050010, China; The Second Hospital, Hebei Medical University, Shijiazhuang 050051, China
  • Received:2022-01-03 Published:2023-08-15
  • Corresponding author: Guiying Wang
引用本文:

王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.

Feifei Wang, Guanglin Wang, Zesong Meng, Baokun Li, Longfei Cao, Juan Zhang, Chaoxi Zhou, Yuanyi Ding, Guiying Wang. Effect of IMPDH1 knockdown on biological behavior of human colon cancer SW480 and HT29 cells[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(08): 884-890.

目的

探讨敲低IMPDH1后对人结肠癌SW480、HT29细胞生物功能的影响。

方法

通过qRT-PCR法验证人体正常结肠粘膜细胞FHC及结肠癌细胞SW480、HT29中IMPDH1基因的表达情况;利用siRNA敲低SW480、HT29细胞中IMPDH1的表达,采用qRT-PCR法及Western blot法检测SW480、HT29细胞中IMPDH1的mRNA及蛋白表达水平,验证转染效果;通过MTT、Transwell及划痕愈合实验检测敲低IMPDH1基因表达后,对SW480、HT29的细胞增殖、侵袭及迁移能力的影响。

结果

IMPDH1在FHC、SW480及HT29细胞中均有表达,且IMPDH1在SW480、HT29细胞中的表达高于FHC细胞;siRNA转染SW480、HT29细胞后,IMPDH1在mRNA及蛋白表达水平与对照组相比,差异具有统计学意义(P<0.01);根据MTT的实验结果显示,敲低IMPDH1的表达能抑制SW480、HT29细胞的体外增殖能力(P<0.05);Transwell的实验结果显示,敲低IMPDH1的表达能抑制SW480、HT29细胞体外侵袭能力(P<0.05);划痕愈合实验显示,敲低IMPDH1的表达,能抑制SW480、HT29细胞的体外迁移能力(P<0.05)。

结论

IMPDH1在SW480、HT29细胞中的表达水平高于在FHC细胞中的表达水平;敲低IMPDH1表达后,在体表抑制SW480、HT29的细胞增殖、侵袭及迁移能力。

Objective

To investigate the effect of IMPDH1 knockdown on the biological behavior of human colon cancer SW480 and HT29 cells.

Methods

The expression of IMPDH1 gene in the human normal colon mucosal cell line FHC and the human colon cancer cell lines SW480 and HT29 was detected by qRT-PCR. Small interfering RNAs (siRNAs) was used to knock down the expression of IMPDH1 in SW480 and HT29 cells, and the mRNA and protein expression levels of IMPDH1 in SW480 and HT29 cells were detected by qRT-PCR and Western blot, respectively, to verify the transfection effects. MTT, Transwell, and scratch healing assays were performed to detect the effects of IMPDH1 gene knockdown on the proliferation, invasion, and migration of SW480 and HT29 cells.

Results

IMPDH1 was expressed in FHC, SW480, and HT29 cells, and the expression of IMPDH1 in SW480 and HT29 cells was higher than that in FHC cells. After siRNA transfection of SW480 and HT29 cells, the mRNA and protein expression levels of IMPDH1 were significantly reduced compared with those of the control group (P<0.05). MTT assay showed that IMPDH1 knockdown inhibited the proliferation of SW480 and HT29 cells in vitro (P<0.01). Transwell assay showed that IMPDH1 knockdown inhibited the invasiveness of SW480 and HT29 cells in vitro (P<0.05). The scratch healing assay showed that IMPDH1 knockdown inhibited the migration ability of SW480 and HT29 cells (P<0.05).

Conclusion

IMPDH1 expression in SW480 and HT29 cells is higher than that in FHC cells. IMPDH1 could inhibit the proliferation, invasion, and migration of SW480 and HT29 cells in vitro.

表1 IMPDH1特异性靶向和非靶向对照siRNA序列
表2 内参及IMPDH1引物序列
图1 qRT-PCR检测各细胞中IMPDH1的相对表达水平
图2 qPCR法检测结肠癌细胞中基因IMPDH1 mRNA表达水平
图3 Western blot法检测结肠癌细胞中IMPDH1蛋白表达水平
图4 敲低IMPDH1表达对SW480、HT29细胞增殖活性的影响
图5 敲低IMPDH1基因表达对SW480、HT29细胞侵袭能力的影响
图6 a 敲低IMPDH1基因表达对结肠癌SW480细胞迁移能力的影响
图6 b 敲低IMPDH1基因表达对结肠癌HT29细胞迁移能力的影响
1
贾宏伟, 熊智灵, 程卯生, 等. 具有抗肿瘤活性的次黄嘌呤核苷酸脱氢酶抑制剂的研究进展 [J]. 中国药物化学杂志, 2021, 31(11): 901-910.
2
Zou J, Han Z, Zhou L, et al. Elevated expression of IMPDH2 is associated with progression of kidney and bladder cancer [J]. Med Oncol, 2015, 32(1): 373-384.
3
He Y, Zheng Z, Xu Y, et al. Over-expression of IMPDH2 is associated with tumor progression and poor prognosis in hepatocellular carcinoma [J]. Am J Cancer Res, 2018, 8(8): 1604-1614.
4
Xu Y, Zheng Z, Gao Y, et al. High expression of IMPDH2 is associated with aggressive features and poor prognosis of primary nasopharyngeal carcinoma [J]. Sci Rep, 2017, 7(1): 745-754.
5
Duan S, Huang W, Liu X, et al. IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways [J].J Exp Clin Cancer Res, 2018, 37(1): 304-315.
6
Li HX, Meng QP, Liu W, et al. IMPDH2 mediate radioresistance and chemoresistance in osteosarcoma cells [J].Eur Rev Med Pharmacol Sci, 2014, 18(20): 3038-3044.
7
Wang G, Wang F, Shan B et al. Uncovering potential genes in colorectal cancer based on integrated and DNA methylation analysis in the gene expression omnibus database [J]. BMC Cancer, 2022, 22(1): 138-139.
8
Cuny GD, Suebsuwong C, Ray SS. Inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors: a patent and scientific literature review (2002-2016) [J]. Expert Opin Ther Pat, 2017, 27(6): 677-690.
9
Carcamo WC, Satoh M, Kasahara H, et al. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells [J]. PLoS One, 2011, 6(12): e29690.
10
Hager PW, Collart FR, Huberman E, et al. Recombinant human inosine monophosphate dehydrogenase type I and type II proteins. Purification and characterization of inhibitor binding [J]. Biochem Pharmacol, 1995, 49(9): 1323-1329.
11
Wu Y, Wei X, Feng H, et al. An eleven metabolic gene signature-based prognostic model for clear cell renal cell carcinoma [J]. Aging (Albany NY), 2020, 12(22): 23165-23186.
12
Ruan H, Song Z, Cao Q, et al. IMPDH1/YB-1 positive feedback loop assembles cytoophidia and represents a therapeutic target in metastatic tumors [J]. Mol Ther, 2020, 28(5): 1299-1313.
13
Jia X, Liu Y, Cheng Y, et al. Inosine monophosphate dehydrogenase type1 sustains tumor growth in hepatocellular carcinoma [J].J Clin Lab Anal, 2022, 36(5): e24416.
14
Braun-Sand S B, Peetz M. Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics [J]. Future Medicinal Chemistry, 2010, 2(1): 81-92
15
Petrelli R, Vita P, Torquati I, et al. Novel inhibitors of inosine monophosphate dehydrogenase in patent literature of the last decade [J]. Recent Pat Anticancer Drug Discov, 2013, 8(2): 103-125.
16
Keppeke GD, Andrade LEC, Barcelos D, et al. IMPDH-based cytoophidium structures as potential theranostics in cancer [J].Mol Ther, 2020, 28(7): 1557-1558.
17
Tong X, Smith J, Bukreyeva N, et al. Merimepodib, an IMPDH inhibitor, suppresses replication of Zika virus and other emerging viral pathogens [J]. Antiviral Res, 2018, 9(14): 34-40.
18
Vanderlinden E, Marchand A, Van Berwaer R, et al. A broad influenza virus inhibitor acting via IMP dehydrogenase and in synergism with ribavirin [J]. Antiviral Res, 2021, 6(19): 105208-105209.
19
Mody K, Baldeo C, Bekaii-Saab T. Antiangiogenic therapy in colorectal cancer [J]. Cancer J, 2018, 24(4): 165-170.
20
Bhattacharya R, Fan F, Wang R, et al. Intracrine VEGF signalling mediates colorectal cancer cell migration and invasion [J]. Br J Cancer, 2017, 117(6): 848-855.
21
Ferreira PCL, Thiesen FV, Pereira AG, et al. A short overview on mycophenolic acid pharmacology and pharmacokinetics [J]. Clin Transplant, 2020, 34(8): e13997.
22
Chong CR, Qian DZ, Pan F, et al. Identification of type 1 inosine monophosphate dehydrogenase as an antiangiogenic drug target [J]. J Med Chem, 2006, 49(9): 2677-2680.
23
Valvezan AJ, McNamara MC, Miller SK, et al. IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex [J]. JCI Insight, 2020, 5(7): e135071.
24
Keppeke GD, Andrade LEC, Barcelos D, et al. IMPDH-Based Cytooph- idium Structures as Potential Theranostics in Cancer [J]. Mol Ther, 2020, 28(7): 1557-1558.
[1] 袁庆港, 刘理想, 张亮, 周世振, 高波, 丁超, 管文贤. 尿素-肌酐比值(UCR)可预测结直肠癌患者术后的长期预后[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 506-509.
[2] 艾贵生, 杨健, 蒋文涛. 肝移植治疗不可切除结直肠癌肝转移的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 174-180.
[3] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[4] 宋华传, 季鹏, 姚焕章, 王永帅, 张珅瑜, 宋瑞鹏, 王继洲. 腹腔镜肝切除术联合微波消融治疗多发性结直肠癌肝转移[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 222-226.
[5] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[6] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[7] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[8] 张金珠, 梅世文, 孙金峰, 胡刚, 邱文龙, 李国利, 汪欣, 王锡山, 汤坚强. 原发结直肠癌超系膜切除术后患者的生存危险因素分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 197-204.
[9] 顾纪明, 蒋晖, 金留根, 钱程佳, 陈柏, 谢立飞. 腹腔镜辅助结肠次全切除术治疗同时性多原发结直肠癌的应用体会[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(02): 153-157.
[10] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[11] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[12] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[13] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[14] 高静, 夏婷婷. 血清乳酸脱氢酶、中性粒细胞/淋巴细胞比值、血浆纤维蛋白原/前白蛋白比值对晚期结直肠癌患者姑息化疗效果与不良反应的评价[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 203-207.
[15] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?