切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 87 -90. doi: 10.3877/cma.j.issn.1674-0785.2024.01.014

综述

超声影像组学在乳腺肿瘤中的应用进展
张志远1, 李雯雯1, 王帅1, 古娇娇1, 高佳茹1, 贾琳娇1, 李文涛1,()   
  1. 1. 450003 河南 郑州,郑州大学人民医院乳腺外科
  • 收稿日期:2023-12-08 出版日期:2024-01-15
  • 通信作者: 李文涛
  • 基金资助:
    河南省人民医院23456人才工程计划项目(ZC23456026); 河南省乳腺癌精准防治工程研究中心项目(ZC20220050)

Advancements in application of ultrasound imaging omics in breast tumors

Zhiyuan Zhang1, Wenwen Li1, Shuai Wang1, Jiaojiao Gu1, Jiaru Gao1, Linjiao Jia1, Wentao Li1,()   

  1. 1. Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou 450003, China
  • Received:2023-12-08 Published:2024-01-15
  • Corresponding author: Wentao Li
引用本文:

张志远, 李雯雯, 王帅, 古娇娇, 高佳茹, 贾琳娇, 李文涛. 超声影像组学在乳腺肿瘤中的应用进展[J]. 中华临床医师杂志(电子版), 2024, 18(01): 87-90.

Zhiyuan Zhang, Wenwen Li, Shuai Wang, Jiaojiao Gu, Jiaru Gao, Linjiao Jia, Wentao Li. Advancements in application of ultrasound imaging omics in breast tumors[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(01): 87-90.

乳腺癌是女性最常见的恶性肿瘤,无创预测肿瘤信息有利于提前制定治疗方案,提高乳腺癌患者生存率。超声影像组学是从超声图像中识别肉眼难以发现的数字化特征,在疾病的预测方面具有重要意义。目前超声组学在预测乳腺癌良恶性、淋巴结转移、分子分型、预后、新辅助化疗疗效等方面初显成效。本文就超声组学在乳腺肿瘤中的应用进展作一综述。

Breast cancer is the most common malignant tumor in women, and non-invasive prediction of tumor information is conducive to making treatment plans in advance and improving the survival rate of breast cancer patients. Ultrasound omics is to identify digital features that are difficult to be found by the naked eye from ultrasound images, which is of great significance in the prediction of diseases. At present, ultrasound omics is effective in predicting the nature of breast tumors, lymph node metastasis, molecular typing, prognosis, and therapeutic effect of neoadjuvant chemotherapy. This article reviews the progress in the application of ultrasound omics in breast tumors.

1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
2
Lambin P, Rios-velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441-6.
3
Luo WQ, Huang QX, Huang XW, et al. Predicting breast cancer in breast imaging reporting and data system (BI-RADS) ultrasound category 4 or 5 lesions: a nomogram combining radiomics and BI-RADS[J]. Sci Rep, 2019, 9(1): 11921.
4
Du Y, Zha HL, Wang H, et al. Ultrasound-based radiomics nomogram for differentiation of triple-negative breast cancer from fibroadenoma[J]. Br J Radiol, 2022, 95(1133): 20210598.
5
Zhang Q, Xiao Y, Dai W, et al. Deep learning based classification of breast tumors with shear-wave elastography[J]. Ultrasonics, 2016, 72: 150-157.
6
Zhang Q, Xiao Y, Suo J, et al. Sonoelastomics for breast tumor classification: a radiomics approach with clustering-based feature selection on sonoelastography[J]. Ultrasound Med Biol, 2017, 43(5): 1058-1069.
7
王世界, 刘华清, 张建兴, 等. 基于自动乳腺全容积成像影像组学的机器学习模型鉴别BI-RADS 4类病灶良恶性的临床价值[J]. 中华超声影像学杂志, 2023, 32(2): 136-143.
8
龚萱桐. 常规超声联合超声造影影像组学在诊断乳腺肿瘤良恶性及预测乳腺癌分子分型中的价值研究 [D]. 北京:中国医学科学院北京协和医学院, 2020.
9
Nicosia L, Pesapane F, Bozzini AC, et al. Prediction of the malignancy of a breast lesion detected on breast ultrasound: radiomics applied to clinical practice[J]. Cancers (Basel), 2023, 15(3): 964.
10
Bonacho T, Rodrigues F, Liberal J. Immunohistochemistry for diagnosis and prognosis of breast cancer: a review[J]. Biotech Histochem, 2020, 95(2): 71-91.
11
Juan MW, Yu J, Peng GX, et al. Correlation between DCE-MRI radiomics features and Ki-67 expression in invasive breast cancer[J]. Oncol Lett, 2018, 16(4): 5084-5090.
12
Ferre R, Elst J, Senthilnathan S, et al. Machine learning analysis of breast ultrasound to classify triple negative and HER2+ breast cancer subtypes[J]. Breast Dis, 2023, 42(1): 59-66.
13
Guo Y, Wu J, Wang Y, et al. Development and validation of an ultrasound-based radiomics nomogram for identifying HER2 status in patients with breast carcinoma[J]. Diagnostics (Basel), 2022, 12(12): 3130.
14
Liu J, Wang X, Hu M, et al. Development of an ultrasound-based radiomics nomogram to preoperatively predict Ki-67 expression level in patients with breast cancer[J]. Front Oncol, 2022, 12: 963925.
15
Wu J, Ge L, Jin Y, et al. Development and validation of an ultrasound-based radiomics nomogram for predicting the luminal from non-luminal type in patients with breast carcinoma[J]. Front Oncol, 2022, 12: 993466.
16
许荣, 欧阳秋芳, 林晴, 等. 超声影像组学预测雌激素受体及孕激素受体双阴性乳腺癌[J]. 中国医学影像技术, 2023, 39(9): 1346-1349.
17
Li N, Song C, Huang X, et al. Optimized radiomics nomogram based on automated breast ultrasound system: a potential tool for preoperative prediction of metastatic lymph node burden in breast cancer[J]. Breast Cancer (Dove Med Press), 2023, 15: 121-132.
18
Qiu X, Jiang Y, Zhao Q, et al. Could ultrasound-based radiomics noninvasively predict axillary lymph node metastasis in breast cancer?[J]. J Ultrasound Med, 2020, 39(10): 1897-1905.
19
Zhou LQ, Wu XL, Huang SY, et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology, 2020, 294(1): 19-28.
20
Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11(1): 1236.
21
刘晗, 徐楠, 吴杰, 等. 基于灰阶超声联合剪切波弹性成像的影像组学模型诊断乳腺癌腋窝淋巴结转移的临床价值[J]. 临床超声医学杂志, 2023, 25(4): 277-283.
22
Gu J, Tong T, Xu D, et al. Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: a multicenter study[J]. Cancer, 2023, 129(3): 356-366.
23
Sun Q, Lin X, Zhao Y, et al. Deep learning vs radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region[J]. Front Oncol, 2020, 10: 53.
24
DiCenzo D, Quiaoit K, Fatima K, et al. Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: results from multi-institutional study[J]. Cancer Med, 2020, 9(16): 5798-5806.
25
Jiang M, Li CL, Luo XM, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Eur J Cancer, 2021, 147: 95-105.
26
Yang M, Liu H, Dai Q, et al. Treatment response prediction using ultrasound-based pre-, post-early, and delta radiomics in neoadjuvant chemotherapy in breast cancer[J]. Front Oncol, 2022, 12: 748008.
27
Huang JX, Shi J, Ding SS, et al. Deep learning model based on dual-modal ultrasound and molecular data for predicting response to neoadjuvant chemotherapy in breast cancer[J]. Acad Radiol, 2023, 30Suppl 2: S50-S61.
28
Xiong L, Chen H, Tang X, et al. Ultrasound-based radiomics analysis for predicting disease-free survival of invasive breast cancer[J]. Front Oncol, 2021, 11: 621993.
29
Yu F, Hang J, Deng J, et al. Radiomics features on ultrasound imaging for the prediction of disease-free survival in triple negative breast cancer: a multi-institutional study[J]. Br J Radiol, 2021, 94(1126): 20210188.
30
Choi BB. Dynamic contrast enhanced-MRI and diffusion-weighted image as predictors of lymphovascular invasion in node-negative invasive breast cancer[J]. World J Surg Oncol, 2021, 19(1): 76.
31
Ryu YJ, Kang SJ, Cho JS, et al. Lymphovascular invasion can be better than pathologic complete response to predict prognosis in breast cancer treated with neoadjuvant chemotherapy[J]. Medicine (Baltimore), 2018, 97(30): e11647.
32
Kayadibi Y, Kocak B, Ucar N, et al. MRI radiomics of breast cancer: machine learning-based prediction of lymphovascular invasion status[J]. Acad Radiol, 2022, 29Suppl 1: S126-S134.
33
查海玲, 潘加珍, 刘薇, 等. 基于超声影像组学模型预测浸润性乳腺癌淋巴管血管侵犯状态[J]. 肿瘤影像学, 2021, 30(1): 6-15.
34
范莉芳, 黄磊, 赵劲松, 等. 基于ABVS影像组学联合VTQ术前预测浸润性乳腺癌淋巴血管侵犯[J]. 放射学实践, 2023, 38(3): 342-348.
[1] 张胜男, 苗雅敬, 周虹, 韩高洁, 王静, 仝巧立, 张旭倩, 尹洪宁. 左心耳三维经食管超声测量与Watchman左心耳封堵器大小的相关性研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 107-113.
[2] 刘韩, 王胰, 舒庆兰, 彭博, 尹立雪, 谢盛华. 基于深度学习的超声心动图三尖瓣反流严重程度智能评估方法研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 121-127.
[3] 成汉林, 史中青, 戚占如, 王小贤, 曾子炀, 单淳劼, 钱隼南, 罗守华, 姚静. 基于深度学习的超声心动图动态图像切面识别研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 128-136.
[4] 赫兰, 杨泽堃, 张颖, 王玉东, 陈伟导, 王一同, 申锷. 双输入BCNN-ResNet模型对超声颈动脉斑块稳定性的分类诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 137-142.
[5] 蔡林利, 宋宏萍, 巨艳, 党晓智, 韩铭, 肖迎聪. 超声结合临床病理指标模型对T1-2期乳腺癌腋窝淋巴结转移的预测价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 143-150.
[6] 冯敏, 赵博文, 潘美, 彭晓慧, 陈冉, 毛彦恺, 陈阳. 超声心动图定量右心时间间期在评估右心室流出道梗阻性疾病胎儿右心功能中的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 151-157.
[7] 李博, 彭芳华, 孔德璇, 张欢欢, 曲东辉, 王锟, 阚长利, 聂明辉, 刘天鑫, 吴文瑛. 超声心动图诊断胎儿单纯肺动脉瓣狭窄的价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 158-162.
[8] 王莹, 王亚红, 赵瑞娜, 韦瑶, 王红燕, 蔡胜, 李建初, 杨萌. 网络教学与传统教学在超声规培医师血管超声检查理论学习中的比较研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 163-166.
[9] 刘逸群, 朱家安, 熊钰, 辛雨薇, 曲琳琳, 杨力, 李文雪, 田辉. 超声造影定量分析大鼠肝急性移植物抗宿主病的实验研究[J]. 中华医学超声杂志(电子版), 2024, 21(01): 75-81.
[10] 陈红, 阮骊韬, 师桃, 郭锋伟, 郝军军, 闫炀, 尚佳楠, 宋艳. 右心室心肌应变与左心室辅助装置植入后早期右心衰竭的相关性研究[J]. 中华危重症医学杂志(电子版), 2024, 17(01): 26-31.
[11] 邢益民, 张天飞, 戴慧勇. 胃肠充盈超声造影检查在反酸、嗳气患者临床诊断中的应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 303-306.
[12] 张茴, 李一, 代美玲. 植入物在乳房重建中的应用进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 349-352.
[13] 刘国安, 陈一杰, 赖江琼, 余丽平, 康春梅. 高频超声联合多普勒超声诊断腹外疝的临床价值[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(01): 106-110.
[14] 焦莉莉, 周芊池, 凌梦芸, 魏红玲, 徐缨. 血清SAA、CA19-9结合超声内镜对结直肠癌术前分期的诊断价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 146-150.
[15] 莫鹏, 郭杏春, 梁秀娟, 王耀明. 超声引导与CT引导射频消融治疗肝细胞癌患者疗效及预后比较[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 151-154.
阅读次数
全文


摘要