切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (05) : 496 -499. doi: 10.3877/cma.j.issn.1674-0785.2024.05.009

综述

靶向超声造影技术在动脉粥样硬化治疗中的应用进展
温绍敏1, 王雅晳1, 施依璐1, 段莎莎1, 云书荣1, 张小杉1,()   
  1. 1. 010050 内蒙古呼和浩特,内蒙古医科大学附属医院超声科
  • 收稿日期:2024-02-06 出版日期:2024-05-15
  • 通信作者: 张小杉

Application of targeted contrast-enhanced ultrasound in treatment of atherosclerosis

Shaomin Wen1, Yaxi Wang1, Yilu Shi1, Shasha Duan1, Shurong Yun1, Xiaoshan Zhang1,()   

  1. 1. Department of Ultrasound, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 0100050, China
  • Received:2024-02-06 Published:2024-05-15
  • Corresponding author: Xiaoshan Zhang
引用本文:

温绍敏, 王雅晳, 施依璐, 段莎莎, 云书荣, 张小杉. 靶向超声造影技术在动脉粥样硬化治疗中的应用进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 496-499.

Shaomin Wen, Yaxi Wang, Yilu Shi, Shasha Duan, Shurong Yun, Xiaoshan Zhang. Application of targeted contrast-enhanced ultrasound in treatment of atherosclerosis[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(05): 496-499.

动脉粥样硬化是一种慢性进展性疾病,其发病机制复杂,尚未完全明了。动脉粥样硬化主要侵犯主动脉、冠状动脉、脑动脉及肾动脉等大中型动脉血管,是冠状动脉疾病、脑血管疾病和外周动脉疾病最常见的病理基础。当斑块破裂并阻塞全身主要的动脉血管时,可导致严重的急性并发症。动脉粥样硬化的治疗主要包括控制危险因素、药物治疗和外科手术,但临床现状仍任重道远。近年来,靶向超声造影技术因其无创性、精确性和实时反馈的优点,在动脉粥样硬化的精准治疗中极具前景。本文就超声造影技术在动脉粥样硬化疾病治疗中的研究进展进行综述。

Atherosclerosis is a chronic progressive disease whose pathogenesis is complex and not yet fully understood. Atherosclerosis mainly invades large and medium-sized arteries such as the aorta, coronary artery, cerebral artery, and renal artery, and is the most common pathological basis for coronary artery disease, cerebrovascular disease, and peripheral artery disease. When plaques rupture and block major arteries throughout the body, it can lead to serious acute complications. The treatment of atherosclerosis mainly includes the control of risk factors, drug therapy, and surgery, but the therapeutic effects are not very satisfactory. In recent years, targeted contrast-enhanced ultrasound (CEUS) has shown promise in the precise treatment of atherosclerosis because of its advantages of non-invasiveness, accuracy, and real-time feedback. This article reviews the progress in the aplication of contrast-enhanced ultrasound in the treatment of atherosclerosis.

1
马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读 [J]. 中国全科医学, 2023, 26(32): 3975-3994.
2
Björkegren JLM, Lusis AJ. Atherosclerosis: Recent developments [J]. Cell, 2022, 185(10): 1630-1645.
3
Wen Q, Wan S, Liu Z, et al. Ultrasound contrast agents and ultrasound molecular imaging [J]. J Nanosci Nanotechnol, 2014, 14(1): 190-209.
4
麻凌峰, 张小杉, 王雅皙. 纳米泡载药靶向治疗动脉粥样硬化的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(2): 214-218.
5
李二晶, 荆慧. 超声纳米微泡造影剂在肿瘤诊疗中的研究进展 [J]. 现代肿瘤医学, 2021, 29(24): 4410-4413.
6
Collis J, Manasseh R, Liovic P, et al. Cavitation microstreaming and stress fields created by microbubbles [J]. Ultrasonics, 2010, 50(2): 273-279.
7
Lentacker I, De Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms [J]. Adv Drug Deliv Rev, 2014, 72: 49-64.
8
孙睿颖, 刘娅妮. 超声微泡运载基因治疗心肌缺血再灌注损伤 [J]. 中华超声影像学杂志, 2017, 26(12): 1101-1104.
9
肖妮娜, 柳建华, 金文慧. 超声联合微泡影响肿瘤组织间质液压并增加化疗药物的转运的研究 [J]. 中国超声医学杂志, 2021, 37(12): 1416-1419.
10
Mundi S, Massaro M, Scoditti E, et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review [J]. Cardiovasc Res, 2018, 114(1): 35-52.
11
Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association [J]. Circulation, 1995, 92(5): 1355-1374.
12
Cho KH. The current status of research on high-density lipoproteins (HDL): A paradigm shift from HDL quantity to HDL quality and HDL functionality [J]. Int J Mol Sci, 2022, 23(7): 3967.
13
Liu F, Zhu J, Huang Y, et al. Hypolipidemic effect of SR-BI gene delivery by combining cationic liposomal microbubbles and ultrasound in hypercholesterolemic rats [J]. Mol Med Rep, 2013, 7(6): 1965-1969.
14
Castle JW, Kent KP, Fan Y, et al. Therapeutic ultrasound: Increased HDL-Cholesterol following infusions of acoustic microspheres and apolipoprotein A-I plasmids [J]. Atherosclerosis, 2015, 241(1): 92-99.
15
Yuan C, Liu L, Tayier B, et al. Experimental study on the optimization of ANM33 release in foam cells [J]. Open Life Sci, 2023, 18(1): 20220564. Published 2023 Feb 23.
16
Wu Y, Deng C, Xu J, et al. Enhanced local delivery of microRNA-145a-5P into mouse aorta via ultrasound-targeted microbubble destruction inhibits atherosclerotic plaque formation [J]. Mol Pharm, 2023, 20(2): 1086-1095.
17
王宇豪, 马小五, 方玲玲, 等. 靶向超声介导携Pik3cb shRNA的超顺磁性氧化铁纳米微泡抑制血管平滑肌细胞增殖 [J]. 中国医学影像学杂志, 2022, 30(6): 529-534.
18
He X, Wu DF, Ji J, et al. Ultrasound microbubble-carried PNA targeting to c-myc mRNA inhibits the proliferation of rabbit iliac arterious smooth muscle cells and intimal hyperplasia [J]. Drug Deliv, 2016, 23(7): 2482-2487.
19
Phillips LC, Klibanov AL, Wamhoff BR, et al. Localized ultrasound enhances delivery of rapamycin from microbubbles to prevent smooth muscle proliferation [J]. J Control Release, 2011, 154(1): 42-49.
20
阎文江, 陈良, 杨晶晶. 超声分子成像技术在靶向诊疗动脉粥样硬化中的进展 [J]. 心血管病学进展, 2022, 43(4): 309-312.
21
Li X, Guo S, Xu T, et al. Therapeutic ultrasound combined with microbubbles improves atherosclerotic plaque stability by selectively destroying the intraplaque neovasculature [published correction appears in Theranostics [J]. 2023 Apr 17;13(7):2259-2262], Theranostics, 2020, 10(6): 2522-2537. Published 2020 Jan 22.
22
Yuan H, Hu H, Sun J, et al. Ultrasound microbubble delivery targeting intraplaque neovascularization inhibits atherosclerotic plaque in an APOE-deficient mouse model [J]. In Vivo, 2018, 32(5): 1025-1032.
23
Zhou J, Niu C, Huang B, et al. Platelet membrane biomimetic nanoparticles combined with UTMD to improve the stability of atherosclerotic plaques [J]. Front Chem, 2022, 10: 868063. Published 2022 Mar 8.
24
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of atherosclerosis [J]. Int J Mol Sci, 2022, 23(6): 3346. Published 2022 Mar 20.
25
Kondo I, Ohmori K, Oshita A, et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction [J]. J Am Coll Cardiol, 2004, 44(3): 644-653.
26
Sheng WS, Xu HL, Zheng L, et al. Intrarenal delivery of bFGF-loaded liposome under guiding of ultrasound-targeted microbubble destruction prevent diabetic nephropathy through inhibition of inflammation [J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup2): 373-385.
27
Ghamkhari A, Tafti HA, Rabbani S, et al. Ultrasound-triggered microbubbles: Novel targeted core-shell for the treatment of myocardial infarction disease [J]. ACS Omega, 2023, 8(12): 11335-11350. Published 2023 Mar 14.
28
Guo S, Zhang S, Chen K, et al. Effects of diagnostic ultrasound with cRGD-microbubbles on simultaneous detection and treatment of atherosclerotic plaque in ApoE-/- mice [J]. Front Cardiovasc Med, 2022, 9: 946557. Published 2022 Jul 22.
29
Yang H, Xiong X, Zhang L, et al. Adhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow [J]. Int J Nanomedicine, 2011, 6: 2043-2051.
30
Sun J, Pan S, Yu H, et al. Anti-inflammatory and anti-thrombotic efficacy of targeted ultrasound microbubbles on LPS-induced HUVEC cells [J]. Anticancer Res, 2021, 41(10): 4761-4769.
31
Yang H, Sun Y, Wei J, et al. The effects of ultrasound-targeted microbubble destruction (UTMD) carrying IL-8 monoclonal antibody on the inflammatory responses and stability of atherosclerotic plaques [J]. Biomed Pharmacother, 2019, 118: 109161.
32
郑晓东, 李珊, 刘映峰, 等. 超声微泡在心血管疾病诊治中的应用进展 [J]. 医学综述, 2019, 25(7): 1411-1415.
33
张苗苗, 戴志飞. 微泡超声造影剂的发展现状与未来展望 [J/OL]. 中华医学超声杂志(电子版), 2020, 17(8): 707-709.
34
Rix A, Curaj A, Liehn E, et al. Ultrasound microbubbles for diagnosis and treatment of cardiovascular diseases [J]. Semin Thromb Hemost, 2020, 46(5): 545-552.
35
Upadhyay A, Dalvi SV. Microbubble formulations: Synthesis, stability, modeling and biomedical applications [J]. Ultrasound Med Biol. 2019, 45(2): 301-343.
36
Fournier L, de La Taille T, Chauvierre C. Microbubbles for human diagnosis and therapy [J]. Biomaterials, 2023, 294: 122025.
[1] 马晓菊, 梁潇, 段云友, 袁丽君, 赵萍. NBAV脂质纳泡对ApoE -/-小鼠动脉粥样硬化病变的评估和干预[J]. 中华医学超声杂志(电子版), 2024, 21(06): 608-616.
[2] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[3] 王宇, 徐芳泉, 周旋, 姚晓峰, 李强. 不断提高分化型甲状腺癌根治性切除规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 473-476.
[4] 孙辉, 李长霖. 分化型甲状腺癌根治性切除术中的关键考量与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 477-481.
[5] 张腾花, 尚培中, 王晓梅, 李晓武, 王金, 苗建军, 刘冰. 外伤性脾破裂三阶梯分层治疗策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 510-512.
[6] 高建新, 王啸飞, 于淼, 路夷平. 局部进展期直肠癌新辅助治疗后行ISR术远切缘距离的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 539-543.
[7] 李阳, 董峰, 曾立鹏. 局部进展期直肠癌新辅助治疗后腹腔镜TaTME与TME中的对比研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 547-550.
[8] 邓小巍, 邵成浩. 胰腺神经内分泌肿瘤转化治疗进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 456-460.
[9] 李永政, 孟煜凡, 樊知遥, 展翰翔. 胰腺神经内分泌肿瘤新辅助治疗研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 481-486.
[10] 武帅, 吴佼星, 王方舟, 杨沛泽, 董顺斌, 王铮, 仵正. 胰腺腺泡细胞癌诊断与治疗[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 487-491.
[11] 王天福, 王刚. 自身免疫性胰腺炎诊治现状[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 492-497.
[12] 刘燚隆, 党荣广, 艾蓉, 张凯. 肝硬化合并静脉曲张出血患者内镜治疗后再出血风险的模型建立与验证[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 336-342.
[13] 胡静, 杨秀锦, 侯志云. HBV感染患者外周血ISGs表达水平变化及其与干扰素治疗疗效的关系[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 343-347.
[14] 朱旦华, 卢放根. 以腹水为主要特征的Castleman病16例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 462-473.
[15] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
阅读次数
全文


摘要