切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (09) : 714 -719. doi: 10.3877/cma.j.issn.1674-0785.2025.09.011

综述

CXCL12及其受体CXCR4/CXCR7在肝脏相关疾病中的研究进展
希龙夫1, 李江涛2,()   
  1. 1 010010 呼和浩特,内蒙古自治区人民医院肝胆胰脾外科
    2 310009 杭州,浙江大学医学院附属第二医院肝胆胰外科
  • 收稿日期:2025-09-07 出版日期:2025-09-30
  • 通信作者: 李江涛
  • 基金资助:
    内蒙古自治区自然科学基金项目-青年基金项目(2024QN08012)

Advances in understanding of role of CXCL12 and its receptors CXCR4/CXCR7 in liver-related diseases

Longfu Xi1, Jiangtao Li2,()   

  1. 1 Department of Hepatobiliary, Pancreatic and Spleen Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010010, China
    2 Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
  • Received:2025-09-07 Published:2025-09-30
  • Corresponding author: Jiangtao Li
引用本文:

希龙夫, 李江涛. CXCL12及其受体CXCR4/CXCR7在肝脏相关疾病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 714-719.

Longfu Xi, Jiangtao Li. Advances in understanding of role of CXCL12 and its receptors CXCR4/CXCR7 in liver-related diseases[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(09): 714-719.

在急性或慢性肝损伤及肝脏恶性肿瘤中,CXC趋化因子配体12(CXCL12)表达显著增高。CXCL12可以激活两种不同的趋化因子受体-CXC趋化因子受体4(CXCR4)和CXC趋化因子受体7(CXCR7)发挥不同的作用。CXCL12-CXCR7信号转导可有助于调节急性肝损伤及肝组织再生,而CXCL12-CXCR4通过激活肝星状细胞及从骨髓募集骨髓间充质干细胞,推动肝纤维化的进展。此外,CXCL12与其受体可促进肿瘤生长、侵袭、转移及肿瘤血管生成。本文概述CXCL12及其受体CXCR4/CXCR7在肝脏相关疾病中的进展,以期提供肝脏相关疾病诊治的新方向和新思路。

In acute or chronic liver injury and malignant liver tumors, the expression of CXC chemokine ligand 12 (CXCL12) is significantly increased. CXCL12 can activate two different chemokine receptors-CXC chemokine receptor-4 (CXCR4) and CXC chemokine receptor-7 (CXCR7)-to play different roles. The CXCL12-CXCR7 axis modulates acute liver injury and liver regeneration, while CXCL12-CXCR4 signaling promotes the progression of liver fibrosis by activating hepatic stellate cells and recruiting bone marrow mesenchymal stem cells from the bone marrow. In addition, CXCL12 and its receptors can promote tumor growth, invasion, metastasis, and angiogenesis. This article summarizes the recent progress in the understanding of CXCL12 and its receptors CXCR4/CXCR7 in liver-related diseases, with the aim of providing new directions and ideas for the diagnosis and treatment of liver-related diseases.

1
Wilson GC, Freeman CM, Kuethe JW, et al. CXC chemokine receptor-4 signaling limits hepatocyte proliferation after hepatic ischemia-reperfusion in mice [J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308: G702-G709.
2
Pawig L, Klasen C, Weber C, et al. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family:molecular perspectives [J]. Front Immunol, 2015, 6: 429.
3
Lu C, Zhang Y, Sun C, et al. Stromal cell derived factor-1 promotes hepatic insulin resistance via inhibiting hepatocyte lipophagy [J]. J Cell Mol Med, 2025; 29(2): e70352.
4
Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1 [J]. Nature, 1996, 382: 635-638.
5
Yoshie O, Imai T, Nomiyama H. Chemokines in immunity [J]. AdvImmunol, 2001, 78: 57-110.
6
Loetscher M, Geiser T, O'Reilly T, et al. Cloning of a human seven transmembrane domain receptor, LESTR, that is highly expressed in leukocytes [J]. J Biol Chem, 1994, 269: 232-237.
7
Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry [J]. Nature, 1996, 382: 829-833.
8
Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1 [J]. Nature, 1996, 382: 833-835.
9
Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice [J]. Proc Natl Acad Sci USA, 1998, 95: 9448-9453.
10
Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract [J]. Nature, 1998, 393: 591-594.
11
Libert F, Parmentier M, Lefort A, et al. Selective amplification and cloning of four new members of the G protein-coupled receptor family [J]. Science, 1989, 244(4904): 569-72.
12
Shimizu N, Soda Y, Kanbe K, et al. A putative G protein-coupled receptor, RDC1, is a novel coreceptor for human and simian immunodeficiency viruses [J]. J Virol, 2000, 74: 619-626.
13
Ding BS, Cao Z, Lis R, et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis [J]. Nature, 2014, 505: 97-102.
14
DeLeve LD, Wang X, Wang L. VEGF-sdf1 recruitment of CXCR7+bone marrow progenitors of liver sinusoidal endothelial cells promotes rat liver regeneration [J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310: G739-G746.
15
Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning [J]. Am J Physiol Gastrointest Liver Physiol, 2003, 284: G15-G26.
16
Ito C, Haraguchi R, Ogawa K, et al. Demethylation in promoter region of severely damaged hepatocytes enhances chemokine receptor CXCR4 gene expression [J]. Histochem Cell Biol, 2023, 160(5): 407-418.
17
Otaka F, Ito Y, Nakamoto S, et al. Macrophages contribute to liver repair after monocrotaline-induced liver injury via SDF-1/CXCR4 [J]. Experimental and therapeutic medicine, 2021, 22(1): 668.
18
Zheng J, Li H, He L, et al. Preconditioning of umbilical cord-derived mesenchymal stem cells by rapamycin increases cell migration and ameliorates liver ischaemia/reperfusion injury in mice via the CXCR4/CXCL12 axis [J]. Cell Prolif, 2019, 52(2): e12546.
19
Krzystek-Korpacka M, Fleszar MG, Fortuna P, et al. Modulation of prostanoids profile and counter-regulation of SDF-1α/CXCR4 and VIP/VPAC2 expression by sitagliptin in non-diabetic rat model of hepatic ischemia-reperfusion injury [J]. Int J Mol Sci, 2021, 22(23): 13155.
20
Abe Y, Uchinami H, Kudoh K, et al. Liver epithelial cells proliferate under hypoxia and protect the liver from ischemic injury via expression of HIF-1 alpha target genes [J]. Surgery, 2012, 152(5): 869-878.
21
Wilson GC, Freeman CM, Kuethe JW, et al. CXC chemokine receptor-4 signaling limits hepatocyte proliferation after hepatic ischemia-reperfusion in mice [J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(8): G702-G709.
22
Ding F, Liu Y, Li J, et al. TC14012 enhances the anti-fibrosis effects of UC-MSCs on the liver by reducing collagen accumulation and ameliorating inflammation [J]. Stem Cell Res Ther, 2024, 15(1): 44.
23
Chen N, Sun Y, Luo P, et al. Association of CXCR4 gene expression and promoter methylation with chronic hepatitis B-related fibrosis/cirrhosis [J]. Int Immunopharmacology, 2024, 139: 112686.
24
Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor:functional cDNA cloning of a seven-transmembrane,G protein-coupled receptor [J]. Science, 1996, 272: 872-877.
25
Hong F, Saiman Y, Si C, et al. X4 Human immunodeficiency virus type 1 gp120 promotes human hepatic stellate cell activation and collagen I expression through interactions with CXCR4 [J]. PLoS One, 2012, 7: e33659.
26
Saiman Y, Agarwal R, Hickman DA, et al. CXCL12 induces hepatic stellate cell contraction through a calcium-independent pathway [J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305: G375-G382.
27
Saiman Y, Jiao J, Fiel MI, et al. Inhibition of the CXCL12/CXCR4 chemokine axis with AMD3100,a CXCR4 small molecule inhibitor,worsens murine hepatic injury [J]. Hepatol Res, 2015, 45: 794-803.
28
Chow LN, Schreiner P, Ng BY, et al. Impact of a CXCL12/CXCR4 antagonist inbleomycin (BLM) induced pulmonary fibrosis and carbon tetrachloride (CCl4) induced hepatic fibrosis in mice [J]. PLoS One, 2016, 11: e0151765.
29
Tsuchiya A, Imai M, Kamimura H, et al. Increased susceptibility to severe chronic liver damage in CXCR4 conditional knock-out mice [J]. Dig Dis Sci, 2012, 57: 2892-2900.
30
Liu Y, Yang X, Jing YY, et al. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis [J]. Sci Rep, 2015, 5: 17762.
31
Cui H, Yang W. Single-cell RNA sequencing analysis reveals potential key prognostic markers in hepatocellular carcinoma [J]. Discov Oncol, 2024, 15(1): 747.
32
Pan XF, Kaminga AC, Wen SW, et al. Chemokines in hepatocellular carcinoma:a meta-analysis [J]. Carcinogenesis, 2020, 41(12): 1682-1694.
33
Chen RX, Song HY, Dong YY, et al. Dynamic expression patterns of differential proteins during early invasion of hepatocellular carcinoma [J]. PLoS One, 2014, 9: e88543.
34
Zhao H, Guo LY, Zhao H, et al. CXCR4 over-expression and survival in cancer: a system review and meta-analysis [J]. Oncotarget, 2015, 6(7): 5022-5040.
35
Wang X, Zhang W, Ding Y, et al. CRISPR/Cas9-mediated genome engineering of CXCR4 decreases the malignancy of hepatocellular carcinoma cells in vitro and in vivo [J]. Oncol Rep, 2017, 37(6): 3565-3571.
36
Kun-Ming C, Chih-Hsien C, Chen-Fang L, et al. Potential anticancer effect of celastrol on hepatocellular carcinoma by suppressing CXCR4-related signal and impeding tumor growth in vivo [J]. Arch Med Res, 2020, 51(4): 297-302.
37
Wu WJ, Wang J, Chen F, et al. Exploration of heterogeneity and recurrence signatures in hepatocellular carcinoma [J]. Mol Ooncol, 2025, 19(8):2388-2411.
38
Lin L, Han MM, Wang F, et al. CXCR7 stimulates MAPK signaling to regulate hepatocellular carcinoma progression [J]. Cell Death Dis, 2014, 5(10): e1488.
39
Liu CH, Chan KM, Chiang T, et al. Dual-functional nanoparticles targeting CXCR4 and delivering antiangiogenic siRNA ameliorate liver fibrosis [J]. Mol Pharm, 2016, 13(7): 2253-2262.
40
Ullah A, Chen G, Zhang Y, et al. A new approach based on CXCR4-targeted combination liposomes for the treatment of liver fibrosis [J]. Biomater Sci, 2022, 10(10): 2650-2664.
41
Morita S, Lei PJ, Shigeta K, et al. Combination CXCR4 and PD-1 blockade enhances intratumoral dendritic cell activation and immune responses against hepatocellular carcinoma [J]. Cancer Immunol Res, 2025, 13(2): 162-170.
42
杨振林, 邹伟伟. 索拉非尼防治大鼠肝癌肝移植术后肿瘤转移复发的研究 [J/OL]. 中华临床医师杂志(电子版), 2011, 5(2): 335-342.
43
Steinberg M, Silva M. Plerixafor: a chemokine receptor-4 antagonist for mobilization of hematopoietic stem cells for transplantation after high-dose chemotherapy for non-Hodgkin's lymphoma or multiple myeloma [J]. Clin Ther, 2010, 32(5): 821-843.
44
Kajiyama H, Shibata K, Terauchi M, et al. Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma [J]. Int J Cancer, 2008, 122(1): 91-99.
45
Song JS, Chang CC, Wu CH, et al. A highly selective and potent CXCR4 antagonist for hepatocellular carcinoma treatment [J]. Proc Natl Acad Sci USA, 2021, 118(13): e2015433118.
[1] 杨秀玲, 王文辉, 杨婕, 卢强. 双表型肝细胞癌与经典型肝细胞癌超声造影特征及危险因素分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 761-767.
[2] 顾怡君, 李奕冉, 钱艺, 蒋栋. 基于超声造影定量指标预测肝细胞癌微血管侵犯及评估其复发的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 451-461.
[3] 黄淳雨, 李文馨, 蒋上, 陈佳佳. 间充质干细胞来源外泌体在肝再生领域的应用[J/OL]. 中华移植杂志(电子版), 2025, 19(04): 268-273.
[4] 张珅瑜, 王继洲. 多灶性肝细胞癌的手术策略——外科医师视角[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(05): 264-270.
[5] 李雪铭, 伊诺, 卢智豪, 冯婧, 董健藤, 李健. 人脐带间充质干细胞来源外泌体抑制肝星状细胞活化发挥抗肝纤维化作用的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 148-156.
[6] 曹键, 孟占鳌, 张可, 张悦, 郭亚豪, 邓锶锶, 罗涛, 朱璇, 覃杰, 黎超, 唐天濠, 陈颖坤, 向青. 基于血清学指标和MRI构建肝纤维化分期诊断双模态模型与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 902-911.
[7] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[8] 袁慧, 周芦忠, 汤鹤年, 潘菊花. LMR与PHR对射频消融术后肝细胞癌患者预后的评估[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 635-641.
[9] 朱康, 郑潇, 张磊, 于娜. 超声造影及血清标志物检测对肝癌介入术后微血管侵犯及复发的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 474-479.
[10] 孟涵钰, 曹瑞雪, 张杨杨, 辛萱, 毕利泉, 刘晓红. HBV感染相关肝细胞癌中MYCT1和FAS的表达及临床病理分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 311-316.
[11] 李娅敏, 吕新蕾, 史秀梅, 王月云, 盛欧, 卜高峰, 成松, 谢士宁. 富马酸丙酚替诺福韦治疗慢性乙型肝炎获得病毒学应答后肝纤维化逆转的影响因素[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 359-363.
[12] 冉影, 刘瑞云, 王欣宇, 顾家琪, 韩宗泽, 李纪文, 杨辉, 王翛然, 王邦茂, 周璐. 瞬时弹性成像对自身免疫性肝炎肝纤维化的诊断效能及其影响因素[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 651-658.
[13] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
[14] 叶苏意, 张若菡, 邓屹, 陈晓明, 张靖, 李静, 许荣德, 崔伟. 三段式混合化疗栓塞治疗不可切除大肝细胞癌的临床疗效及安全性[J/OL]. 中华介入放射学电子杂志, 2025, 13(04): 330-337.
[15] 夏强强, 李兴, 王黎洲. 人工智能在肝细胞癌诊断及治疗决策中的应用[J/OL]. 中华介入放射学电子杂志, 2025, 13(04): 373-377.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?