1 |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
LI Y, GU J, XU F, et al. Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data [J]. Sci Rep, 2018, 8(1): 15834.
|
3 |
Wang X, Ren X, Liu W, et al. Role of downregulated ADARB1 in lung squamous cell carcinoma [J]. Mol Med Rep, 2020, 21(3): 1517-1526.
|
4 |
Sun Y, Wang X, Wen H, et al. Expression and clinical significance of the NCAPH, AGGF1, and FOXC2 proteins in serous ovarian cancer [J]. Cancer Manag Res, 2021, 13: 7253-7262.
|
5 |
Lu H, Shi C, Wang S, Yang C, et al. Identification of NCAPH as a biomarker for prognosis of breast cancer [J]. Mol Biol Rep, 2020, 47(10): 7831-7842.
|
6 |
Wang M, Qiao X, Cooper T, et al. HPV E7-mediated NCAPH ectopic expression regulates the carcinogenesis of cervical carcinoma via PI3K/AKT/SGK pathway [J]. Cell Death Dis, 2020, 11(12): 1049.
|
7 |
Zhou W, Hu J, Zhao J. Non-SMC condensin I complex subunit H (NCAPH), a regulator of cell cycle, predicts poor prognosis in lung adenocarcinoma patients: a study mainly based on TCGA and GEO database [J]. Transl Cancer Res, 2020, 9(12): 7572-7587.
|
8 |
Kim B, Kim SW, Lim JY, et al. NCAPH is required for proliferation, migration and invasion of non-small-cell lung cancer cells [J]. Anticancer Res, 2020, 40(6): 3239-3246.
|
9 |
李军强, 杨志良, 王彦, 等. NCAPH基因敲除对胰腺癌细胞增殖迁移及侵袭能力的影响 [J]. 解放军医学杂志, 2022, 47(6): 555-560.
|
10 |
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles [J]. Nat Methods, 2015, 12(5): 453-457.
|
11 |
Meng Q, Dong Y, Tao H, et al. ALK-rearranged squamous cell carcinoma of the lung [J]. Thorac Cancer, 2021, 12(7): 1106-1114.
|
12 |
Yan JQ, Liu M, Ma YL, et al. Development of alternative splicing signature in lung squamous cell carcinoma [J]. Med Oncol, 2021, 38(5): 49.
|
13 |
Cheng Z, Yu C, Cui S, et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1 [J]. Nat Commun, 2019, 10(1): 3200.
|
14 |
Shimomura H, Sasahira T, Nakashima C, et al. Non-SMC condensin I Complex Subunit H (NCAPH) Is associated with lymphangiogenesis and drug resistance in oral squamous cell carcinoma [J]. J Clin Med, 2019, 9(1): 72.
|
15 |
Sun C, Huang S, Wang H, et al. Non-SMC condensin I complex subunit H enhances proliferation, migration, and invasion of hepatocellular carcinoma [J]. Mol Carcinog, 2019, 58(12): 2266-2275.
|
16 |
林家香. NCAPH在宫颈癌发生发展中的作用及其机制的初步研究 [D]. 济南: 山东大学, 2017.
|
17 |
Xiong Q, Fan S, Duan L, et al. NCAPH is negatively associated with Mcl-1 in non-small cell lung cancer [J]. Mol Med Rep, 2020, 22(4): 2916-2924.
|
18 |
Zhan SJ, Liu B, Linghu H. Identifying genes as potential prognostic indicators in patients with serous ovarian cancer resistant to carboplatin using integrated bioinformatics analysis [J]. Oncol Rep, 2018, 39(6): 2653-2663.
|
19 |
Yin L, Jiang LP, Shen QS, et al. NCAPH plays important roles in human colon cancer [J]. Cell Death Dis, 2017, 8(3): e2680.
|
20 |
Li B, Xiao Q, Shan L, et al. NCAPH promotes cell proliferation and inhibits cell apoptosis of bladder cancer cells through MEK/ERK signaling pathway [J]. Cell Cycle, 2022, 21(4): 427-438.
|
21 |
Wang HZ, Yang SH, Li GY, et al. Subunits of human condensins are potential therapeutic targets for cancers [J]. Cell Div, 2018, 13: 2.
|
22 |
Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: phenotypical vs functional differentiation [J]. Front Immunol, 2014, 5: 514.
|
23 |
Mantovani A, Biswas SK, Galdiero MR, et al. Macrophage plasticity and polarization in tissue repair and remodelling [J]. J Pathol, 2013, 229(2): 176-185.
|
24 |
汪鹏, 仇建南, 王忠夏, 等. 肝癌微环境中肿瘤相关巨噬细胞的研究进展 [J]. 临床肝胆病杂志, 2023, 39(05): 1212-8.
|
25 |
Cheng H, Wang Z, Fu L, et al. Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview [J]. Front Oncol, 2019, 9: 421.
|
26 |
Viana IMO, Roussel S, Defrêne J, et al. Innate and adaptive immune responses toward nanomedicines [J]. Acta Pharm Sin B, 2021, 11(4): 852-870.
|
27 |
张淑芬, 曾颖萍, 孟廷廷, 等. NK细胞的抗肿瘤机制及其在肿瘤靶向治疗中的应用研究进展 [J]. 药学学报, 2022, 57(1): 122-33+277.
|
28 |
Frese-Schaper M, Keil A, Yagita H, et al. Influence of natural killer cells and perforin-mediated cytolysis on the development of chemically induced lung cancer in A/J mice [J]. Cancer Immunol Immunother, 2014, 63(6): 571-580.
|
29 |
牛德红, 李岩. 辅助性T细胞与肺癌免疫 [J]. 国外医学(肿瘤学分册), 2005, (1): 56-8.
|
30 |
Gutiérrez-Melo N, Baumjohann D. T follicular helper cells in cancer [J]. Trends Cancer, 2023, 9(4): 309-325.
|
31 |
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations [J]. Int Rev Cell Mol Biol, 2019, 348: 1-68.
|
32 |
李洋, 郭锋杰, 孟旭英, 等. 树突状细胞外泌体与肺癌免疫治疗 [J]. 天津医科大学学报, 2023, 29(1): 94-97.
|
33 |
Schneider T, Hoffmann H, Dienemann H, et al. Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3 [J]. J Thorac Oncol, 2011, 6(7): 1162-1168.
|
34 |
Borst J, Ahrends T, Bąbała N, et al. CD4(+) T cell help in cancer immunology and immunotherapy [J]. Nat Rev Immunol, 2018, 18(10): 635-647.
|