1 |
Kritikos A, Neofytos D, Khanna N, et al. Accuracy of sensititre yeastone echinocandins epidemiological cut-off values for identification of FKS mutant candida albicans and candida glabrata: a ten year national survey of the fungal infection network of switzerland (Funginos) [J]. Clin Microbiol Infect, 2018,24(11): 1211-1214.
|
2 |
Pfaller MA, Diekema DJ, Turnidge JD, et al. Twenty years of the sentry antifungal surveillance program: results for candida species from 1997-2016 [J]. Open Forum Infect Dis, 2019,6(Suppl 1): S79-S94.
|
3 |
Pathakumari B, Liang G, Liu W. Immune defence to invasive fungal infections: A comprehensive review [J]. Biomed Pharmacother, 2020,130: 110550.
|
4 |
Dhanasekaran S, Pushparaj S P, Sundar M S, et al. Revealing anti-fungal potential of plant-derived bioactive therapeutics in targeting secreted aspartyl proteinase (SAP) of Candida albicans: a molecular dynamics approach [J]. J Biomol Struct Dyn, 2023: 1-15.
|
5 |
Fang J, Huang B, Ding Z. Efficacy of antifungal drugs in the treatment of oral candidiasis: a bayesian network meta-analysis [J]. J Prosthet Dent, 2021,125(2): 257-265.
|
6 |
Jain T, Mishra P, Kumar S, et al. Molecular dissection studies of TAC1, a transcription activator of candida drug resistance genes of the human pathogenic fungus candida albicans [J]. Front Microbiol, 2023,14: 994873.
|
7 |
Feng W, Yang J, Ma Y, et al. The effects of secreted aspartyl proteinase inhibitor ritonavir on azoles-resistant strains of Candida albicans as well as regulatory role of SAP2 and ERG11 [J]. Immun Inflamm Dis, 2021,9(3): 667-680.
|
8 |
Belmadani A, Semlali A, Rouabhia M. Dermaseptin-S1 decreases candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes [J]. J Appl Microbiol, 2018,125(1): 72-83.
|
9 |
Lin L, Wang M, Zeng J, et al. Sequence variation of candida albicans sap2 enhances fungal pathogenicity via complement evasion and macrophage M2-like phenotype induction [J]. Adv Sci (Weinh), 2023,10(20): e2206713.
|
10 |
Sharma A, Solis N V, Huang M Y, et al. Hgc1 independence of biofilm hyphae in candida albicans [J]. mBio, 2023,14(2): e349822.
|
11 |
Tan Y, Lin Q, Yao J, et al. In vitro outcomes of quercetin on candida albicans planktonic and biofilm cells and in vivo effects on vulvovaginal candidiasis. Evidences of its mechanisms of action [J]. Phytomedicine, 2023,114: 154800.
|
12 |
Feng W, Yang J, Ma Y, et al. Correlation between SAP2 and CAP1 in clinical strains of Candida albicans at planktonic and biofilm states [J]. Can J Microbiol, 2022,68(12): 722-730.
|
13 |
Ardizzoni A, Wheeler R T, Pericolini E. It takes two to tango: How a dysregulation of the innate immunity, coupled with candida virulence, Triggers VVC Onset [J]. Front Microbiol, 2021,12: 692491.
|
14 |
Corral-Ramos C, Barrios R, Ayte J, et al. TOR and MAP kinase pathways synergistically regulate autophagy in response to nutrient depletion in fission yeast [J]. Autophagy, 2022,18(2): 375-390.
|
15 |
Clsi CALS. Performance standards for antifungal susceptibility testing of yeasts, 1st Edn [S]. 2018.
|
16 |
Tavanti A, Hensgens LA, Mogavero S, et al. Genotypic and phenotypic properties of Candida parapsilosis sensu strictu strains isolated from different geographic regions and body sites [J]. BMC Microbiol, 2010,10: 203.
|
17 |
Miao J, Regan J, Cai C, et al. Glycogen metabolism in candida albicans impacts fitness and virulence during vulvovaginal and invasive candidiasis [J]. mBio, 2023,14(2): e4623.
|
18 |
Gerges MA, Fahmy YA, Hosny T, et al. Biofilm formation and aspartyl proteinase activity and their association with azole resistance among candida albicans causing vulvovaginal candidiasis, Egypt [J]. Infect Drug Resist, 2023,16: 5283-5293.
|
19 |
Miramon P, Lorenz M C. The SPS amino acid sensor mediates nutrient acquisition and immune evasion in candida albicans [J]. Cell Microbiol, 2016,18(11): 1611-1624.
|
20 |
Lohse MB, Brenes LR, Ziv N, et al. An opaque cell-specific expression program of secreted proteases and transporters allows cell-type cooperation in candida albicans [J]. Genetics, 2020,216(2): 409-429.
|
21 |
Li Y, Huang S, Du J, et al. Current and prospective therapeutic strategies: tackling Candida albicans and Streptococcus mutans cross-kingdom biofilm [J]. Front Cell Infect Microbiol, 2023,13: 1106231.
|
22 |
Branco J, Miranda IM, Rodrigues AG. Candida parapsilosis virulence and antifungal resistance mechanisms: a comprehensive review of key determinants [J]. J Fungi (Basel), 2023,9(1): 80.
|
23 |
Kaur J, Nobile CJ. Antifungal drug-resistance mechanisms in candida biofilms [J]. Curr Opin Microbiol, 2023,71: 102237.
|
24 |
董行, 郎东浩, 符雪, 等. 群体感应系统与生物膜耐药机制的研究现状 [J/OL]. 中华临床医师杂志(电子版), 2021,15(1): 57-60.
|
25 |
Feng W, Yang J, Ma Y, et al. Relationships between secreted aspartyl proteinase 2 and general control nonderepressible 4 gene in the candida albicans resistant to itraconazole under planktonic and biofilm conditions [J]. Braz J Microbiol, 2023,54(2): 619-627.
|
26 |
Mare AD, Man A, Ciurea CN, et al. Silver nanoparticles biosynthesized with spruce bark extract-a molecular aggregate with antifungal activity against candida species [J]. Antibiotics (Basel), 2021,10(10): 1261.
|
27 |
Miramón P, Pountain AW, van Hoof A, et al. The paralogous transcription factors stp1 and stp2 of candida albicans have distinct functions in nutrient acquisition and host interaction [J]. Infect Immun, 2020,88(5): e00763-e00819.
|
28 |
Böttcher B, Hoffmann B, Garbe E, et al. The transcription factor stp2 is important for candida albicans biofilm establishment and sustainability [J]. Front Microbiol, 2020,11: 794.
|
29 |
Miramón P, Pountain AW, van Hoof A, et al. The paralogous transcription factors stp1 and stp2 of candida albicans have distinct functions in nutrient acquisition and host interaction [J]. Infect Immun, 2020,88(5): e00763-19.
|
30 |
Pfirrmann T, Heessen S, Omnus D J, et al. The prodomain of Ssy5 protease controls receptor-activated proteolysis of transcription factor Stp1 [J]. Mol Cell Biol, 2010,30(13): 3299-3309.
|