1 |
国家心血管病中心. 中国心血管健康与疾病报告2022 [M]. 北京:中国协和医科大学出版社, 2023.
|
2 |
Libby P. Mechanisms of acute coronary syndromes and their implications for therapy [J]. N Engl J Med, 2013, 368(21): 2004-2013.
|
3 |
Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making [J]. J Am Coll Cardiol, 2013, 62(18): 1639-1653.
|
4 |
刘亮, 肖浩, 崔晓磊, 等. 急性心肌梗死合并心源性休克患者预后因素分析97 例 [J/OL]. 中华临床医师杂志(电子版), 2024, 18(2):183-189.
|
5 |
Escaned J, Berry C, De Bruyne B, et al. Applied coronary physiology for planning and guidance of percutaneous coronary interventions.A clinical consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the European Society of Cardiology [J]. EuroIntervention, 2023, 19(6): 464-481.
|
6 |
Prati F, Romagnoli E, Gatto L, et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study [J]. Eur Heart J, 2020,41(3): 383-391.
|
7 |
Mézquita AJV, Biavati F, Falk V, et al. Clinical quantitative coronary artery stenosis and coronary atherosclerosis imaging: a Consensus Statement from the Quantitative Cardiovascular Imaging Study Group[J]. Nat Rev Cardiol, 2023, 20(10): 696-714.
|
8 |
李娟, 刘宏斌, 戴艳丽, 等. 易损斑块的生理学特征及无创影像学检查方法 [J]. 中华老年心脑血管病杂志, 2014, 16(7): 776-778.
|
9 |
de Korte CL, Carlier SG, Mastik F, et al. Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo [J]. Eur Heart J,2002, 23(5): 405-413.
|
10 |
Schaar JA, De Korte CL, Mastik F, et al. Characterizing vulnerable plaque features with intravascular elastography [J]. Circulation, 2003,108(21): 2636-2641.
|
11 |
Gijsen F, Katagiri Y, Barlis P, et al. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications [J].Eur Heart J, 2019, 40(41): 3421-3433.
|
12 |
Wu X, von Birgelen C, Muramatsu T, et al. A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture [J]. EuroIntervention, 2017, 13(9):e1099-e1103.
|
13 |
Wu X, Ono M, Kawashima H, et al. Angiography-Based 4-Dimensional superficial wall strain and stress: A new diagnostic tool in the catheterization laboratory [J]. Front Cardiovasc Med, 2021, 8: 667310.
|
14 |
Huang J, Yang F, Gutiérrez-Chico JL, et al. Optical coherence tomography-derived changes in plaque structural stress over the cardiac cycle: A new method for plaque biomechanical assessment [J].Front Cardiovasc Med, 2021, 8: 715995.
|
15 |
Gutiérrez-Chico JL. Superficial wall stress: the long awaited comprehensive biomechanical parameter to objectify and quantify our intuition [J]. Int J Cardiovasc Imaging, 2018, 34(6): 863-865.
|
16 |
Hong H, Li C, Gutiérrez-Chico JL, et al. Radial wall strain: a novel angiographic measure of plaque composition and vulnerability [J].EuroIntervention, 2022, 18: 1001-1010.
|
17 |
Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation [J]. Eur Heart J, 2021, 42(14):1289-1367.
|
18 |
中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. 光学相干断层成像技术在冠心病介入诊疗中应用的中国专家共识[J]. 中华心血管病杂志, 2023, 51(2): 109-124.
|
19 |
Schaar JA, De Korte CL, Mastik F, et al. Characterizing vulnerable plaque features with intravascular elastography [J]. Circulation, 2003,108(21): 2636-2641.
|
20 |
Keshavarz-Motamed Z, Saijo Y, Majdouline Y, et al. Coronary artery atherectomy reduces plaque shear strains: an endovascular elastography imaging study [J]. Atherosclerosis, 2014, 235(1):140-149.
|
21 |
de Korte CL, Pasterkamp G, van der Steen AF, et al. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro [J]. Circulation, 2000,102(6): 617-623.
|
22 |
Okura H. A natural-history study of coronary disease [J]. N Engl J Med, 2011, 364(15): 1470-1472.
|
23 |
Ahmadi A, Argulian E, Leipsic J, et al. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC State-of-the-Art review [J]. J Am Coll Cardiol, 2019, 74(12): 1608-1617.
|
24 |
Wang ZQ, Xu B, Li CM, et al. Angiography-derived radial wall strain predicts coronary lesion progression in non-culprit intermediate stenosis [J]. J Geriatr Cardiol, 2022, 19(12): 937-948.
|
25 |
Li C, Wang Z, Yang H, et al. The association between angiographically derived radial wall strain and the risk of acute myocardial infarction [J].JACC Cardiovasc Interv, 2023, 16(9): 1039-1049.
|
26 |
张旭军, 王清平. 急性ST 段抬高型心肌梗死直接介入治疗中高血栓负荷处理策略及进展 [J]. 中国临床研究, 2015, 28(8): 1094-1098.
|
27 |
阿拉腾宝力德, 李淑娟. 直接支架植入在血栓高负荷急性ST 段抬高型心肌梗死患者经皮冠状动脉介入治疗中的临床疗效 [J/OL]. 中华临床医师杂志(电子版), 2020, 14(9): 674-679.
|
28 |
Molony D, Samady H. Vascular biomechanics: The true apex of the cardiovascular risk pyramid? [J]. JACC Cardiovasc Interv, 2023,16(9): 1050-1053.
|
29 |
Kogame N, Ono M, Kawashima H, et al. The impact of coronary physiology on contemporary clinical decision making [J]. JACC Cardiovasc Interv, 2020, 13(14): 1617-1638.
|
30 |
Lønborg J, Engstrøm T, Kelbæk H, et al. Fractional flow reserveguided complete revascularization improves the prognosis in patients with ST-segment-elevation myocardial infarction and severe nonculprit disease: A DANAMI 3-PRIMULTI substudy (Primary PCI in patients with ST-Elevation myocardial infarction and multivessel disease:treatment of culprit lesion only or complete revascularization) [J]. Circ Cardiovasc Interv, 2017, 10(4): e004460.
|
31 |
Ang D, Berry C. FAVOR Ⅲ China: quantitative flow ratio-guided coronary intervention in practice [J]. Cardiovasc Res, 2022, 118(11):e78-e80.
|
32 |
Tu S, Xu B, Chen L, et al. Short-term risk stratification of non-flowlimiting coronary stenosis by angiographically derived radial wall strain [J]. J Am Coll Cardiol, 2023, 81(8): 756-767.
|
33 |
Yang S, Wang Z, Park SH, et al. Relationship of coronary angiographyderived radial wall strain with functional significance, plaque morphology, and clinical outcomes [J]. JACC Cardiovasc Interv, 2024,17(1): 46-56.
|
34 |
Prati F, Biccirè FG. Radial wall strain and plato's cave: Are shadows enough to get the truth? [J]. J Am Coll Cardiol, 2023, 81(8): 768-770.
|
35 |
Garcia-Garcia HM, Bourantas CV. Does radial wall strain really carry Incremental prognostic information to plaque composition? [J]. JACC Cardiovasc Interv, 2024, 17(1): 57-59.
|
36 |
Fezzi S, Ding D, Mahfoud F, et al. Illusion of revascularization:does anyone achieve optimal revascularization during percutaneous coronary intervention? [J]. Nat Rev Cardiol, 2024, 7.
|
37 |
Fezzi S, Huang J, Wijns W, et al. Two birds with one stone: integrated assessment of coronary physiology and plaque vulnerability from a single angiographic view-a case report [J]. Eur Heart J Case Rep,2023, 7(8): ytad309.
|