1 |
Grice EA, Kong HH, Renaud G, et al.A diversity profile of the human skin microbiota [J].Genome Res, 2008, 18(7): 1043-1050.
|
2 |
Gallo RL.Human skin is the largest epithelial surface for interaction with microbes [J].J Invest Dermatol, 2017, 137(6): 1213-1214.
|
3 |
Callewaert C, Ravard Helffer K, Lebaron P.Skin microbiome and its interplay with the environment [J].Am J Clin Dermatol, 2020,21(Suppl 1): 4-11.
|
4 |
Yang Y, Qu L, Mijakovic I, et al.Advances in the human skin microbiota and its roles in cutaneous diseases [J].Microb Cell Fact,2022, 21(1): 176.
|
5 |
Sanford JA, Gallo RL.Functions of the skin microbiota in health and disease [J].Semin Immunol, 2013, 25(5): 370-377.
|
6 |
Edmonds-Wilson SL, Nurinova NI, Zapka CA, et al.Review of human hand microbiome research [J].J Dermatol Sci, 2015, 80(1): 3-12.
|
7 |
Kobayashi T, Glatz M, Horiuchi K, et al.Dysbiosis and staphylococcus aureus colonization drives inflammation in atopic dermatitis [J].Immunity, 2015, 42(4): 756-766.
|
8 |
Nakatsuji T, Chen TH, Narala S, et al.Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis [J].Sci Transl Med, 2017, 9(378):eaah4680.
|
9 |
Nakatsuji T, Chen TH, Butcher AM, et al.A commensal strain of Staphylococcus epidermidis protects against skin neoplasia [J].Sci Adv, 2018, 4(2): eaao4502.
|
10 |
Oh J, Byrd AL, Park M,et al.Temporal stability of the human skin microbiome [J].Cell, 2016, 165(4): 854-866.
|
11 |
Grice EA, Kong HH, Conlan S, et al.Topographical and temporal diversity of the human skin microbiome [J].Science, 2009, 324(5931):1190-1192.
|
12 |
Findley K, Oh J, Yang J, et al.Topographic diversity of fungal and bacterial communities in human skin [J].Nature, 2013, 498(7454):367-370.
|
13 |
Oh J, Byrd AL, Deming C, et al.Biogeography and individuality shape function in the human skin metagenome [J].Nature, 2014, 514(7520):59-64.
|
14 |
Grice EA, Segre JA.The skin microbiome [J].Nat Rev Microbiol,2011, 9(4): 244-253.
|
15 |
Oh J, Byrd AL, Deming C, et al.Biogeography and individuality shape function in the human skin metagenome [J].Nature, 2014, 514(7520):59-64.
|
16 |
Costello EK, Lauber CL, Hamady M, et al.Bacterial community variation in human body habitats across space and time [J].Science,2009, 326(5960): 1694-1697.
|
17 |
Al-Ghazzewi FH, Tester RF.Impact of prebiotics and probiotics on skin health [J].Benef Microbes, 2014, 5(2): 99-107.
|
18 |
Hurlow J, Bowler PG.Acute and chronic wound infections:microbiological, immunological, clinical and therapeutic distinctions[J].J Wound Care, 2022, 31(5): 436-445.
|
19 |
Castanheira FV, Kubes P.Neutrophils and NETs in modulating acute and chronic inflammation [J].Blood, 2019, 133(20): 2178-2185.
|
20 |
Gupta S, Poret AJ, Hashemi D, et al.Cutaneous surgical wounds have distinct microbiomes from intact skin [J].Microbiol Spectr, 2023,11(1): e0330022.
|
21 |
Costerton JW, Stewart PS, Greenberg EP.Bacterial biofilms: a common cause of persistent infections [J].Science, 284(5418): 1318-1322.
|
22 |
Gurjala AN, Geringer MR, Seth AK et al.Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing [J].Wound Repair Regen, 2011, 19(3): 400-410.
|
23 |
Papayannopoulos V.Neutrophils facing biofilms: the battle of the barriers [J].Cell Host Microbe, 2019, 25(4): 477-479.
|
24 |
Zhao F, Su Y, Wang J, et al.A highly efficacious electrical biofilm treatment system for combating chronic wound bacterial infections [J].Adv Mater, 2023, 35(6): e2208069.
|
25 |
Kong HH, Segre JA.Skin microbiome: looking back to move forward[J].J Invest Dermatol, 2012, 132(3Pt2): 933-939.
|
26 |
Grice EA, Snitkin ES, Yockey LJ, et al.Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response [J].Proc Natl Acad Sci USA, 2010, 107(33): 14799-14804.
|
27 |
Wang Y, Beekman J, Hew J, et al.Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring [J].Adv Drug Deliv Rev, 2018, 123: 3-17.
|
28 |
Ding X, Tang Q, Xu Z, et al.Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice [J].Burns Trauma, 2022, 10: tkac014.
|
29 |
Souto EB, Ribeiro AF, Ferreira MI, et al.New nanotechnologies for the treatment and repair of skin burns infections [J].Int J Mol Sci,2020, 21(2): 393.
|
30 |
Pangli H, Papp A.The relation between positive screening results and MRSA infections in burn patients [J].Burns, 2019, 45(7): 1585-1592.
|
31 |
Church D, Elsayed S, Reid O, et al.Burn wound infections [J].Clin Microbiol Rev, 2006, 19(2): 403-434.
|
32 |
Tejiram S, Shupp JW.Innovations in infection prevention and treatment [J].Surg Infect (Larchmt), 2021, 22(1): 12-19.
|
33 |
Akers KS, Rowan MP, Niece KL, et al.Colistin pharmacokinetics in burn patients during continous venovenous hemofiltration [J].Antimicrob Agents Chemother, 2015, 59(1): 46-52.
|
34 |
Ganapathy H, Pal SK, Teare L, et al.Use of colistin in treating mutiresistant Gram-negative organisms in a specialised burns unit [J].Burns, 2010, 36(4): 522-527.
|
35 |
Azzopardi EA, Azzopardi SM, Boyce DE, et al.Emerging gramnegative infections in burn wounds [J].J Burn Care Res, 2011, 32(5):570-576.
|
36 |
Ladhani HA, Yowler CJ, Claridge JA.Burn wound colonization,infection, and sepsis [J].Surg Infect (Larchmt), 2021, 22(1): 44-48.
|
37 |
Azzopardi EA, Azzopardi E, Camilleri L, et al.Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis [J].PLoS One, 2014, 9(4): e95042.
|
38 |
Park HS, Pham C, Paul E, et al.Early pathogenic colonisers of acute burn wounds: A retrospective review [J].Burns, 2017, 43(8): 1757-1765.
|
39 |
Cabral L, Afreixo V, Meireles R, et al.Evaluation of procalcitonin accuracy for the distinction between gram-negative and gram-positive bacterial sepsis in burn patients [J].J Burn Care Res, 2019, 40(1):112-119.
|
40 |
Dong XM, Pei LL, Lu PS, et al.Bacteriological investigation and drug resistance analysis of chronic refractory wound secretions [J].J Craniofac Surg, 2022, 33(7): 2028-2030.
|
41 |
Chang Y, Li Y, Fan T, et al.Pathogenic bacteria characteristics and drug resistance in acute, delayed, and chronic periprosthetic joint infection: A retrospective analysis of 202 patients [J].Int Wound J,2023, 20(8): 3315-3328.
|
42 |
Pradeep A, Ashok N, Priya V, et al.Colistimethate sodium-chitosan hydrogel for treating Gram-negative bacterial wound infections [J].Int J Biol Macromol, 2022, 214: 610-616.
|
43 |
Holmes CL, Anderson MT, Mobley HLT, et al.Pathogenesis of gramnegative bacteremia [J].Clin Microbiol Rev, 2021, 34(2): e00234-20.
|
44 |
Newton K, Dixit VM.Signaling in innate immunity and inflammation[J].Cold Spring Harb Perspect Biol, 2012, 4(3): a006049.
|
45 |
Zhu X, Huang H, Zhao L.PAMPs and DAMPs as the bridge between periodontitis and atherosclerosis: the potential therapeutic targets [J].Front Cell Dev Biol, 2022, 10: 856118.
|
46 |
Hatinguais R, Willment JA, Brown GD.PAMPs of the fungal cell wall and mammalian PRRs [J].Curr Top Microbiol Immunol, 2020, 425:187-223.
|
47 |
Edwards R, Harding KG.Bacteria and wound healing [J].Curr Opin Infect Dis, 2004, 17(2): 91-96.
|
48 |
Yang H, Hu C, Li F, et al.Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation [J].IUBMB Life, 2013, 65(6): 526-532.
|
49 |
Mazgaeen L, Gurung P.Recent advances in lipopolysaccharide recognition systems [J].Int J Mol Sci, 2020, 21(2): 379.
|
50 |
Anhê FF, Barra NG, Cavallari JF, et al.Metabolic endotoxemia is dictated by the type of lipopolysaccharide [J].Cell Rep, 2021, 36(11):109691.
|
51 |
Gioannini TL, Weiss JP.Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells [J].Immunol Res, 2007,39(1-3): 249-260.
|
52 |
Candelli M, Franza L, Pignataro G, et al.Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases[J].Int J Mol Sci, 2021, 22(12): 6242.
|
53 |
Tomasek JJ, Gabbiani G, Hinz B, et al.Myofibroblasts and mechanoregulation of connective tissue remodelling [J].Nat Rev Mol Cell Biol,2002, 3(5): 349-363.
|
54 |
Hinz B.Formation and function of the myofibroblast during tissue repair [J].J Invest Demmatol, 2007, 127(3): 526-537.
|
55 |
Merkt W, Zhou Y, Han H, et al.Myofibroblast fate plasticity in tissue repair and fibrosis: Deactivation, apoptosis, senescence and reprogramming [J].Wound Repair Regen, 2021, 29(4): 678-691.
|
56 |
Griffin MF, desJardins-Park HE, Mascharak S, et al.Understanding the impact of fibroblast heterogeneity on skin fibrosis [J].Dis Model Mech, 2020, 13(6): dmm044164.
|
57 |
Schuster R, Younesi F, Ezzo M, et al.The role of myofibroblasts in physiological and pathological tissue repair [J].Cold Spring Harb Perspect Biol, 2023, 15(1): a041231.
|
58 |
Ogawa R.Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis [J].Int J Mol Sci, 2017, 18(3): 606.
|
59 |
Wang ZC, Zhao WY, Cao Y, et al.The roles of inflammation in keloid and hypertrophic scars [J].Front Immunol, 2020, 11: 603187.
|
60 |
Goldberg SR, Diegelmann RF.What makes wounds chronic [J].Surg Clin North Am, 2020, 100(4): 681-693.
|
61 |
van den Broek LJ, van der Veer WM, de Jong EH, et al.Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation [J].Exp Dermatol, 2015,24(8): 623-629.
|
62 |
Agrawal A, Ding J, Agrawal B, et al.Stimulation of toll-like receptor pathways by burn eschar tissue as a possible mechanism for hypertrophic scarring [J].Wound Repair Regen, 2021, 29(5): 810-819.
|
63 |
Parikh UM, Mentz J, Collier I, et al.Strategies to minimize surgical scarring: translation of lessons learned from bedside to bench and back[J].Adv Wound Care (New Rochelle), 2022, 11(6): 311-329.
|
64 |
van den Broek LJ, van der Veer WM, de Jong EH, et al.Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation [J].Exp Dermatol, 2015,24(8): 623-629.
|
65 |
Rippon MG, Westgate S, Rogers AA.Implications of endotoxins in wound healing: a narrative review [J].J Wound Care, 2022, 31(5):380-392.
|
66 |
Uehara A, Takada H.Functional TLRs and NODs in human gingival fibroblasts [J].J Dent Res, 2007, 86(3): 249-254.
|
67 |
Satish L, Gallo PH, Johnson S, et al.Local probiotic therapy with lactobacillus plantarum mitigates scar formation in rabbits after burn injury and infection [J].Surg Infect (Larchmt), 2017, 18(2): 119-127.
|
68 |
Agrawal A, Ding J, Agrawal B, et al.Stimulation of toll-like receptor pathways by burn eschar tissue as a possible mechanism for hypertrophic scarring [J].Wound Repair Regen, 2021, 29(5): 810-819.
|
69 |
Fan P, Wang Y, Li J, et al.lncRNA PAPPA-AS1 induces the development of hypertrophic scar by upregulating TLR4 through interacting with TAF15 [J].Mediators Inflamm, 2021, 2021: 3170261.
|
70 |
Xu Z, Cheng C, Zhang Y, et al.Lipopolysaccharide induces skin scarring through the TLR4/Myd88 inflammatory signaling pathway in dermal fibroblasts [J].Burns, 2023, 49(8): 1997-2006.
|