1 |
Duering M,Biessels GJ,Brodtmann A,et al.Neuroimaging standards for research into small vessel disease-advances since 2013 [J].Lancet Neurol,2023,22(7): 602-618.
|
2 |
Wardlaw JM,Mair G,von Kummer R,et al.Accuracy of automated computer-aided diagnosis for stroke imaging: A critical evaluation of current evidence [J].Stroke,2022,53(7): 2393-2403.
|
3 |
Chavva IR,Crawford AL,Mazurek MH,et al.Deep learning applications for acute stroke management [J].Ann Neurol,2022,92(4): 574-587.
|
4 |
Karthik R,Menaka R,Johnson A,et al.Neuroimaging and deep learning for brain stroke detection - a review of recent advancements and future prospects [J].Comput Methods Programs Biomed,2020,197: 105728.
|
5 |
Qiao X,Lu C,Xu M,et al.Deep SAP: A novel brain image-based deep learning model for predicting stroke-associated pneumonia from spontaneous intracerebral hemorrhage [J].Acad Radiol,2024,31(12):5193-5203.
|
6 |
Xu F,Dong G,Li J,et al.Deep convolution generative adversarial network-based electroencephalogram data augmentation for poststroke rehabilitation with motor imagery [J].Int J Neural Syst,2022,32(9): 2250039.
|
7 |
Yu H,Wang Z,Sun Y,et al.Prognosis of ischemic stroke predicted by machine learning based on multi-modal MRI radiomics [J].Front Psychiatry,2022,13: 1105496.
|
8 |
Clèrigues A,Valverde S,Bernal J,et al.Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks [J].Comput Biol Med,2019,115: 103487.
|
9 |
Ahmed R,Al Shehhi A,Werghi N,et al.Segmentation of stroke lesions using transformers-augmented MRI analysis [J].Hum Brain Mapp,2024,45(11): e26803.
|
10 |
Zhou L,Wu H,Luo G,et al.Deep learning-based 3D cerebrovascular segmentation workflow on bright and black blood sequences magnetic resonance angiography [J].Insights Imaging,2024,15(1): 81.
|
11 |
Woo I,Lee A,Jung SC,et al.Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: Comparison with conventional algorithms [J].Korean J Radiol,2019,20(8): 1275-1284.
|
12 |
West HW,Siddique M,Williams MC,et al.Deep-learning for epicardial adipose tissue assessment with computed tomography:Implications for cardiovascular risk prediction [J].JACC Cardiovasc Imaging,2023,16(6): 800-816.
|
13 |
Kim YC,Lee JE,Yu I,et al.Evaluation of diffusion lesion volume measurements in acute ischemic stroke using encoder-decoder convolutional network [J].Stroke,2019,50(6): 1444-1451.
|
14 |
Aamir F,Aslam I,Arshad M,et al.Accelerated diffusion-weighted MR image reconstruction using deep neural networks [J].J Digit Imaging,2023,36(1): 276-288.
|
15 |
Moulton E,Valabregue R,Piotin M,et al.Interpretable deep learning for the prognosis of long-term functional outcome post-stroke using acute diffusion weighted imaging [J].J Cereb Blood Flow Metab,2023,43(2): 198-209.
|
16 |
Nazari-Farsani S,Yu Y,Duarte Armindo R,et al.Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network [J].Neuroimage Clin,2023,37: 103278.
|
17 |
Albers GW,Lansberg MG,Kemp S,et al.A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3) [J].Int J Stroke,2017,12(8): 896-905.
|
18 |
Yu Y,Christensen S,Ouyang J,et al.Predicting hypoperfusion lesion and target mismatch in stroke from diffusion-weighted MRI using deep learning [J].Radiology,2023,307(1): e220882.
|
19 |
Winder A,d'Esterre CD,Menon BK,et al.Automatic arterial input function selection in CT and MR perfusion datasets using deep convolutional neural networks [J].Med Phys,2020,47(9): 4199-4211.
|
20 |
Zhu H,Chen Y,Tang T,et al.ISP-net: Fusing features to predict ischemic stroke infarct core on CT perfusion maps [J].Comput Methods Programs Biomed,2022,215: 106630
|
21 |
Hillal A,Sultani G,Ramgren B,et al.Accuracy of automated intracerebral hemorrhage volume measurement on non-contrast computed tomography: A swedish stroke register cohort study [J].Neuroradiology,2023,65(3): 479-488.
|
22 |
Lee H,Lee J,Jang J,et al.Predicting hematoma expansion in acute spontaneous intracerebral hemorrhage: Integrating clinical factors with a multitask deep learning model for non-contrast head CT [J].Neuroradiology,2024,66(4): 577-587.
|
23 |
Hu B,Shi Z,Lu L,et al.A deep-learning model for intracranial aneurysm detection on CT angiography images in China: A stepwise,multicentre,early-stage clinical validation study [J].Lancet Digit Health,2024,6(4): e261-e271.
|
24 |
Yang J,Xie M,Hu C,et al.Deep learning for detecting cerebral aneurysms with CT angiography [J].Radiology,2021,298(1): 155-163.
|
25 |
Bizjak Ž,Choi JH,Park W,et al.Deep geometric learning for intracranial aneurysm detection: Towards expert rater performance [J].J Neurointerv Surg,2024,16(11): 1157-1162.
|
26 |
Luo Y,Gao K,Fawaz M,et al.Automatic detection of cerebral microbleeds using susceptibility weighted imaging and artificial intelligence [J].Quant Imaging Med Surg,2024,14(3): 2640-2654.
|
27 |
Xia P,Hui ES,Chua BJ,et al.Deep-learning-based MRI microbleeds detection for cerebral small vessel disease on quantitative susceptibility mapping [J].J Magn Reson Imaging,2024,60(3): 1165-1175.
|
28 |
Suwalska A,Wang Y,Yuan Z,et al.CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network [J].Comput Biol Med,2022,151(Pt A): 106233.
|
29 |
Barber PA,Demchuk AM,Zhang J,et al.Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy.ASPECTS study group.Alberta stroke programme early CT score [J].Lancet,2000,355(9216): 1670-1674.
|
30 |
Cagnazzo F,Derraz I,Dargazanli C,et al.Mechanical thrombectomy in patients with acute ischemic stroke and ASPECTS ≤6: A metaanalysis [J].J Neurointerv Surg,2020,12(4): 350-355.
|
31 |
Mair G,White P,Bath PM,et al.External validation of e-ASPECTS software for interpreting brain CT in stroke [J].Ann Neurol,2022,92(6): 943-957.
|
32 |
Nagel S,Wang X,Carcel C,et al.Clinical utility of electronic alberta stroke program early computed tomography score software in the ENCHANTED trial database [J].Stroke,2018,49(6): 1407-1411.
|
33 |
Hussain L,Malibari AA,Alzahrani JS,et al.Bayesian dynamic profiling and optimization of important ranked energy from gray level co-occurrence (GLCM) features for empirical analysis of brain MRI [J].Sci Rep,2022,12(1): 15389.
|
34 |
Luo J,Dai P,He Z,et al.Deep learning models for ischemic stroke lesion segmentation in medical images: A survey [J].Comput Biol Med,2024,175: 108509.
|
35 |
Liu Y,Wen Z,Wang Y,et al.Artificial intelligence in ischemic stroke images: Current applications and future directions [J].Front Neurol,2024,15: 1418060.
|
36 |
Al-Maini M,Maindarkar M,Kitas GD,et al.Artificial intelligencebased preventive,personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: A narrative review [J].Rheumatol Int,2023,43(11): 1965-1982.
|