| 1 |
Frisoli ML, Essien K, Harris JE. Vitiligo: mechanisms of pathogenesis and treatment[J]. Annu Rev Immunol, 2020, 38: 621-648.
|
| 2 |
Perez-bootello J, Cova-martin R, Naharro-rodriguez J, et al. Vitiligo: Pathogenesis and new and emerging treatments[J]. Int J Mol Sci, 2023, 24(24): 17306.
|
| 3 |
Xie H, Zhou F, Liu L, et al. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?[J]. J Dermatol Sci, 2016, 81(1): 3-9.
|
| 4 |
Tintore M, Vidal-jordana A, Sastre-garriga J. Treatment of multiple sclerosis - success from bench to bedside[J]. Nat Rev Neurol, 2019, 15(1): 53-58.
|
| 5 |
Campione E, Mazzilli S, Diprete M, et al. The role of glutathione-s transferase in psoriasis and associated comorbidities and the effect of dimethyl fumarate in this pathway[J]. Front Med (Lausanne), 2022, 8(9): 760852.
|
| 6 |
Liao Z, Yao Y, Dong B, et al. Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires MrgX2 activation[J]. Chin Med J (Engl). 2024 Sep 30. Epub ahead of print.
|
| 7 |
Le Y, Geng MM, Dong BQ, et al. Increased splicing of CXCR3 isoform B (CXCR3B) by impaired NRF2 signaling leads to melanocyte apoptosis in active vitiligo[J]. Free Radic Biol Med. 2024, 20(225): 687-698.
|
| 8 |
Zhang Y, Zhao S, Fu Y, et al. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease[J]. Cell Death Dis. 2024, 11(8):641.
|
| 9 |
Rowojolu OA, Orlow SJ, Elbuluk N, et al. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone[J]. Exp Dermatol, 26(7):637-644.
|
| 10 |
Chang Y, Li S, Guo W, et al. Simvastatin Protects Human Melanocytes from H2O2-Induced Oxidative Stress by Activating Nrf2[J]. J Invest Dermatol. 2017, 137(6):1286-1296.
|
| 11 |
Miao F, Su MY, Jiang S, et al. Intramelanocytic acidification plays a role in the antimelanogenic and antioxidative properties of vitamin C and its derivatives[J]. Oxid Med Cell Longev. 2019, 12: 2084805.
|
| 12 |
Xie B, Zhu Y, Shen Y, et al. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection[J]. Expert Opin Ther Targets, 2023, 27(3): 189-206.
|
| 13 |
Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo[J]. Med Res Rev, 2021, 41(2): 1138-1166.
|
| 14 |
Henry W, Lim PE, Grimes OA, et al. Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo: a randomized multicenter trial[J]. JAMA Dermatol, 2014, 151(1): 42-50.
|
| 15 |
Wei GM, Pan YH, Wang JY, et al. Role of HMGB1 in Vitiligo: Current Perceptions and Future Perspectives[J]. Clin Cosmet Investig Dermatol, 2022, 15: 2177-2186.
|
| 16 |
Zhou S, Zeng H, Huang J, et al. Epigenetic regulation of melanogenesis[J]. Ageing Res Rev, 2021, 69: 101349.
|
| 17 |
Denat L, Kadekaro AL, Marrot L, et al. Melanocytes as instigators and victims of oxidative stress[J]. J Invest Dermatol, 2014, 134(6): 1512-1518.
|
| 18 |
Papaccio F, D'arino A, Caputo S, et al. Focus on the contribution of oxidative stress in skin aging[J]. Antioxidants (Basel), 2022, 11(6): 1121.
|
| 19 |
Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease[J]. J Invest Dermatol, 2006, 126(12): 2565-2575.
|
| 20 |
Prignano F, Pescitelli L, Becatti M, et al. Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin[J]. J Dermatol Sci, 2009, 54(3): 157-167.
|
| 21 |
Boissy RE, Liu YY, Medrano EE, et al. Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures of melanocytes from vitiligo patients[J]. J Invest Dermatol, 1991, 97(3): 395-404.
|
| 22 |
Karsli N, Akcali C, Ozgoztasi O, et al. Role of oxidative stress in the pathogenesis of vitiligo with special emphasis on the antioxidant action of narrowband ultraviolet B phototherapy[J]. J Int Med Res, 2014, 42(3): 799-805.
|
| 23 |
Elgoweini M, Nour El, Din N. Response of vitiligo to narrowband ultraviolet B and oral antioxidants[J]. J Clin Pharmacol, 2009, 49(7): 852-855.
|
| 24 |
Lin Y, Ding Y, Wu Y, et al. The underestimated role of mitochondria in vitiligo: from oxidative stress to inflammation and cell death[J]. Exp Dermatol, 2024, 33(1): e14856.
|
| 25 |
Romano-lozano V, Cruz-avelar A, Pedrero ML. Nuclear factor erythroid 2-related factor 2 in vitiligo[J]. Actas Dermo-Sifilogr, 2022, 113(7): 705-711.
|
| 26 |
Arowojolu OA, Orlow SJ, Elbuluk N, et al. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone[J]. Exp Dermatol, 2017, 26(7): 637-644.
|