1 |
Laflamme MA, Murry CE. Regenerating the Heart [J]. Nat Biotechnol, 2005, 23(23): 845-856.
|
2 |
Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling [J]. Nat Rev Cardiol, 2014, 11(5): 255-265.
|
3 |
Francis Stuart SD, De Jesus NM, Lindsey ML, et al. The crossroads of inflammation, fibrosis, and arrhythmia followingmyocardial infarction [J]. J Mol Cell Cardiol, 2015, 91: 114-122.
|
4 |
李龙, 杨水祥. 心衰与心律失常的关联和发展 [J]. 中国心血管病研究, 2016, 14(2): 105-108.
|
5 |
Ripplinger CM, Lou Q, Li W, et al. Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: Implications for low-voltage cardioversion [J]. Heart Rhythm, 2009, 6(1): 87-97.
|
6 |
Kohl P, Gourdie RG. Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue? [J]. J Mol Cell Cardiol, 2014, 70(100): 37-46.
|
7 |
Istrătoaie O, Pirici I, Ofiţeru AM, et al. Evaluation of cardiac microvasculature in patients with diffuse myocardial fibrosis [J]. Rom J Morphol Embryol, 2016, 57(4): 1351-1356.
|
8 |
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis [J]. Cell Mol Life Sci, 2014, 71(4): 549-574.
|
9 |
Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling [J]. J Mol Cell Cardiol, 2011, 51(4): 600-606.
|
10 |
Desmoulière A, Geinoz A, Gabbiani F, et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts [J]. J Cell Biol, 1993, 122(1): 103-111.
|
11 |
Lighthouse JK, Small EM. Transcriptional control of cardiac fibroblast plasticity [J]. J Mol Cell Cardiol, 2015, 91: 52-60.
|
12 |
Bujak M, Ren G, Kweon HJ, et al. Essential Role of Smad3 in Infarct Healing and in the Pathogenesis of Cardiac Remodeling [J].Circulation, 2007, 116 (19): 2127-2138.
|
13 |
Weber KT, Sun Y, Bhattacharya SK, et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart [J]. Nat Rev Cardiol, 2013, 10(1): 15-26.
|
14 |
Rodríguez-Pascual F, Busnadiego O, González-Santamaría J. The profibrotic role of endothelin-1: Is the door still open for the treatment of fibrotic diseases? [J]. Life Sci, 2014, 118(2): 156-164.
|
15 |
Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis [J]. Cir Res, 2015, 116(7): 1269-1276.
|
16 |
Mueller EE, Momen A, Massé S, et al. Electrical remodelling precedes heart failure in an endothelin-1-induced model of cardiomyopathy [J]. Cardiovasc Res, 2011, 89(3): 623-633.
|
17 |
Kohan DE, Cleland JG, Rubin LJ, et al. Clinical trials with endothelin receptor antagonists: what went wrong and where can we improve? [J]. Life Sci, 2012, 91(13-14): 528-539.
|
18 |
Muraoka N, Ieda M. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis [J]. Annu Rev Physiol, 2014, 76(76): 21-37.
|
19 |
Fu JD, Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine [J]. Circ J, 2015, 79(2): 245-254.
|
20 |
Srivastava D, Yu P. Recent advances in direct cardiac reprogramming [J]. Curr Opin Genet Dev, 2015, 34: 77-81.
|
21 |
Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell [J]. EMBO J, 2015, 34(6): 710-738.
|
22 |
张成, 章少中, 张亚洲, 等. 诱导心脏肌成纤维细胞向心肌样细胞转分化的miRNA [J]. 中国组织工程研究, 2013, 17(45): 7924-7931.
|
23 |
Efe JA, Hilcove S, Kim J, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy [J]. Nat Cell Biol, 2011, 13(3): 215-222.
|
24 |
Talkhabi M, Pahlavan S, Aghdami N, et al. Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes [J]. Biochem Biophys Res Commun, 2015, 463(4): 699-705.
|
25 |
Jayawardena T, Mirotsou M, Dzau VJ. Direct reprogramming of cardiac fibroblasts to cardiomyocytes using microRNAs [J]. Methods Mol Biol, 2014, 1150(1150): 263-272.
|
26 |
Zhao Y, Londono P, Cao Y, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling [J]. Nat Commun, 2014, 6: 8243-8258.
|
27 |
Palazzolo G, Quattrocelli M, Toelen J, et al. Cardiac niche influences the direct reprogramming of canine fibroblasts into cardiomyocyte-like cells [J]. Stem Cell Int, 2016, 2016: 4969430.
|
28 |
Furtado MB, Costa MW, Pranoto EA, et al. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair [J]. Circ Res, 2014, 114(9): 1422-1434.
|
29 |
Nam YJ, Lubczyk C, Bhakta M, et al. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors [J]. Development, 2014, 141(22): 4267-4278.
|
30 |
Gherghiceanu M, Barad L, Novak A, et al. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: Comparative ultrastructure [J]. J Cell Mol Med, 2011, 15(11): 2539-2551.
|
31 |
Ma H. In vivo cardiac reprogramming using an optimal single polycistronic construct [J]. Cardiovasc Res, 2015, 108(2): 217-229.
|
32 |
Rysä J, Tenhunen O, Serpi R, et al. GATA-4 is an angiogenic survival factor of the infarcted heart [J]. Circ Heart Fail, 2010, 3(3): 440-450.
|
33 |
Lalit PA, Salick MR, Nelson DO, et al. Lineage reprogramming of fibroblasts to proliferative induced cardiac progenitor cells by defined factors [J]. Cell Stem Cell, 2016, 18(3): 354-367.
|
34 |
Zhang Y, Cao N, Huang Y, et al. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts [J]. Cell Stem Cell, 2016, 18(3): 368-381.
|
35 |
Pratico ED, Feger BJ, Watson MJ, et al. RNA-mediated reprogramming of primary adult human dermal fibroblasts into c-kit(+) cardiac progenitor cells [J]. Stem Cells Dev, 2015, 24(22): 2622-2633.
|
36 |
Gong K, Chen YF, Li P, et al. Transforming growth factor-β inhibits myocardial PPARγ expression in pressure overload-induced cardiac fibrosis and remodeling in mice [J]. J Hypertens, 2011, 29(9): 1810-1819.
|
37 |
Cunnington RH, Wang B, Ghavami S, et al. Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility [J]. Am J Physiol, 2010, 300(1): C176-186.
|
38 |
Wang Y, Aitoufella H, Herbin O, et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin Ⅱ-infused mice [J]. J Clin Invest, 2010, 120(2): 422-432.
|
39 |
Arslan F, Smeets MB, Riem Vis PW, et al. Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction [J]. Circ Res, 2011, 108(5): 582-592.
|
40 |
Gonzalez-Santamaria J, Villalba M, Busnadiego O, et al. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction [J]. Cardiovasc Res, 2016, 109(1): 67-78.
|
41 |
Schuetze KB, Mckinsey TA, Long CS. Targeting cardiac fibroblasts to treat fibrosis of the heart: focus on HDACs [J]. J Mol Cell Cardiol, 2014, 70(9): 100-107.
|
42 |
Lee CY, Burnett JC Jr. Natriuretic peptides and therapeutic applications [J]. Heart Fail Rev, 2007, 12(2): 131-142.
|
43 |
李世强, 傅向华, 刘君, 等. 静脉注射重组人脑利钠肽对急性心肌梗死伴心力衰竭患者的急性血流动力学效应的研究 [J]. 中华心血管病杂志, 2006, 34(1): 23-27.
|
44 |
Moilanen AM, Rysä J, Serpi R, et al. (Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function [J]. PLoS One, 2012, 7(7): e41404.
|
45 |
Corinaldesi C, Luigi LD, Lenzi A, et al. Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications [J]. J Endocrinol Invest, 2016, 39(2): 143-151.
|
46 |
Wang K, Zhao X, Kuang C, et al. Overexpression of SDF-1alpha enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway [J]. PLoS one, 2012, 7(9): e43922.
|
47 |
Chen Z, Zeng C, Wang WE. Progress of stem cell transplantation for treating myocardial infarction [J]. Curr Stem Cell Res Ther, 2017, 12(8): 624-636.
|