1 |
Petropoulos M, Karamichali A, Rossetti GG, et al. Transcription-replication conflicts underlie sensitivity to PARP inhibitors [J]. Nature, 2024, 628(8007): 433-441.
|
2 |
Kim YN, Shim Y, Seo J, et al. Investigation of PARP inhibitor resistance based on serially collected circulating tumor DNA in patients with BRCA-mutated ovarian cancer [J]. Clin Cancer Res, 2023, 29(14): 2725-2734.
|
3 |
孔北华, 刘继红, 黄鹤, 等. 卵巢癌PARP抑制剂临床应用指南(2022版) [J]. 现代妇产科进展, 2022, 31(8): 561-572.
|
4 |
Schreiber V, Dantzer F, Ame JC, et al. Poly(ADP-ribose): novel functions for an old molecule [J]. Nat Rev Mol Cell Biol, 2006, 7(7): 517-28.
|
5 |
Groelly FJ, Fawkes M, Dagg RA, et al. Targeting DNA damage response pathways in cancer [J]. Nat Rev Cancer, 2023, 23(2): 78-94.
|
6 |
Liu F, Chen J, Li X, et al. Advances in development of selective antitumor inhibitors that target PARP-1 [J]. J Med Chem, 2023, 66(24): 16464-16483.
|
7 |
Murai J, Huang SY, Das BB, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors [J]. Cancer Res, 2012, 72(21): 5588-5599.
|
8 |
Dias MP, Moser SC, Ganesan S, et al. Understanding and overcoming resistance to PARP inhibitors in cancer therapy [J]. Nat Rev Clin Oncol, 2021, 18(12): 773-791.
|
9 |
Li H, Liu ZY, Wu N, et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications [J]. Mol Cancer, 2020, 19(1): 107.
|
10 |
To KKW, Huang Z, Zhang H, et al. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy [J]. Drug Resist Updat, 2024, 73: 101058.
|
11 |
Vaidyanathan A, Sawers L, Gannon AL, et al. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells [J]. Br J Cancer, 2016, 115(4): 431-441.
|
12 |
Nelson L, Barnes BM, Tighe A, et al. Exploiting a living biobank to delineate mechanisms underlying disease-specific chromosome instability [J]. Chromosome Res, 2023, 31(3): 21.
|
13 |
Pettitt SJ, Krastev DB, Brandsma I, et al. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance [J]. Nat Commun, 2018, 9(1): 1849.
|
14 |
O'Malley DM, Krivak TC, Kabil N, et al. PARP inhibitors in ovarian cancer: A review [J]. Target Oncol, 2023, 18(4): 471-503.
|
15 |
Gogola E, Duarte AA, de Ruiter JR, et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality [J]. Cancer Cell, 2018, 33(6): 1078-1093.
|
16 |
Pillay N, Brady RM, Dey M, et al. DNA replication stress and emerging prospects for PARG inhibitors in ovarian cancer therapy [J]. Prog Biophys Mol Biol, 2021, 163: 160-170.
|
17 |
Burdett NL, Willis MO, Pandey A, et al. Small-scale mutations are infrequent as mechanisms of resistance in post-PARP inhibitor tumour samples in high grade serous ovarian cancer [J]. Sci Rep, 2023, 13(1): 21884.
|
18 |
Houl JH, Ye Z, Brosey CA, et al. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death [J]. Nat Commun, 2019, 10(1): 5654.
|
19 |
Murciano-Goroff YR, Schram AM, Rosen EY, et al. Reversion mutations in germline BRCA1/2-mutant tumors reveal a BRCA-mediated phenotype in non-canonical histologies [J]. Nat Commun, 2022, 13(1): 7182.
|
20 |
Tobalina L, Armenia J, Irving E, et al. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance [J]. Ann Oncol, 2021, 32(1): 103-112.
|
21 |
Zong H, Zhang J, Xu Z, et al. Comprehensive analysis of somatic reversion mutations in Homologous Recombination Repair (HRR) Genes in A large cohort of Chinese pan-cancer patients [J]. J Cancer, 2022, 13(4): 1119-1129.
|
22 |
Lin KK, Harrell MI, Oza AM, et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma [J]. Cancer Discov, 2019, 9(2): 210-219.
|
23 |
Hu D, Guo E, Yang B, et al. Mutation profiles in circulating cell-free DNA predict acquired resistance to olaparib in high-grade serous ovarian carcinoma [J]. Cancer Sci, 2022, 113(8): 2849-2861.
|
24 |
Nacson J, Krais JJ, Bernhardy AJ, et al. BRCA1 mutation-specific responses to 53BP1 loss-induced homologous recombination and PARP inhibitor resistance [J]. Cell Rep, 2018, 24(13): 3513-3527.e7.
|
25 |
Zhou J, Gelot C, Pantelidou C, et al. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors [J]. Nat Cancer, 2021, 2(6): 598-610.
|
26 |
Fried W, Tyagi M, Minakhin L, et al. Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors [J]. Nat Commun, 2024, 15(1): 2862.
|
27 |
Mirman Z, Sasi NK, King A, et al. 53BP1-shieldin-dependent DSB processing in BRCA1-deficient cells requires CST-Polα-primase fill-in synthesis [J]. Nat Cell Biol, 2022, 24(1): 51-61.
|
28 |
Sanij E, Hannan KM, Xuan J, et al. CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer [J]. Nat Commun, 2020, 11(1): 2641.
|
29 |
Bursać S, Prodan Y, Pullen N, et al. Dysregulated ribosome biogenesis reveals therapeutic liabilities in cancer [J]. Trends Cancer, 2021, 7(1): 57-76.
|
30 |
Li C, Liu J, Lyu Y, et al. "METTL16 inhibits the malignant progression of epithelial ovarian cancer through the lncRNA MALAT1/β-Catenin axis" [J]. Anal Cell Pathol (Amst), 2023, 2023: 9952234.
|
31 |
Huff SE, Winter JM, Dealwis CG. Inhibitors of the cancer target ribonucleotide reductase, past and present [J]. Biomolecules, 2022, 12(6): 815.
|
32 |
Sun C, Yin J, Fang Y, et al. BRD4 Inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency [J]. Cancer Cell, 2018, 33(3): 401-416.e8.
|
33 |
Marzi L, Szabova L, Gordon M, et al. The indenoisoquinoline TOP1 inhibitors selectively target homologous recombination-deficient and schlafen 11-positive cancer cells and synergize with olaparib [J]. Clin Cancer Res, 2019, 25(20): 6206-6216.
|
34 |
Nimonkar AV, Genschel J, Kinoshita E, et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair [J]. Genes Dev, 2011, 25(4): 350-362.
|
35 |
Song B, Jiang Y, Jiang Y, et al. ML323 suppresses the progression of ovarian cancer via regulating USP1-mediated cell cycle [J]. Front Genet, 2022, 13: 917481.
|
36 |
Shah PD, Wethington SL, Pagan C, et al. Combination ATR and PARP Inhibitor (CAPRI): A phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer [J]. Gynecol Oncol, 2021, 163(2): 246-253.
|
37 |
余旭旭, 魏杰, 楼芳. 卵巢透明细胞癌诊疗现状及进展 [J/OL]. 中华临床医师杂志(电子版), 2024, 18(1): 91-95.
|
38 |
Gupta N, Huang TT, Nair JR, et al. BLM overexpression as a predictive biomarker for CHK1 inhibitor response in PARP inhibitor-resistant BRCA-mutant ovarian cancer [J]. Sci Transl Med, 2023, 15(701): eadd7872.
|
39 |
Serra V, Wang AT, Castroviejo-Bermejo M, et al. Identification of a molecularly-defined subset of breast and ovarian cancer models that respond to WEE1 or ATR inhibition, overcoming PARP inhibitor resistance [J]. Clin Cancer Res, 2022, 28(20): 4536-4550.
|
40 |
Marques C, Ferreira da Silva F, Sousa I, et al. Chemotherapy-free treatment of recurrent advanced ovarian cancer: myth or reality? [J]. Int J Gynecol Cancer, 2023, 33(4): 607-618.
|
41 |
Li Y, Cen Y, Tu M, et al. Nanoengineered gallium ion incorporated formulation for safe and efficient reversal of PARP inhibition and platinum resistance in ovarian cancer [J]. Research (Wash D C), 2023, 6: 0070.
|
42 |
Zhang X, Yao J, Li X, et al. Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer [J]. Sci Adv, 2023, 9(29): eadf7195.
|
43 |
Chi L, Huan L, Zhang C, et al. Adenosine receptor A2b confers ovarian cancer survival and PARP inhibitor resistance through IL-6-STAT3 signalling [J]. J Cell Mol Med, 2023, 27(15): 2150-2164.
|