1 |
Yuan Y, Wu D, Li J, et al. Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma [J]. Front Pharmacol, 2023, 14: 1217400.
|
2 |
Zhang Y, Han G, Gu J, et al. Role of tumor-associated macrophages in hepatocellular carcinoma: impact, mechanism, and therapy [J]. Front Immunol, 2024, 15: 1429812.
|
3 |
Yao C, Wu S, Kong J, et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies [J]. Cancer Biol Med, 2023, 20(1): 25-43.
|
4 |
Yu M, Yu H, Wang H, et al. Tumorassociated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review) [J]. Int J Oncol, 2024, 65(4): 100.
|
5 |
Huang J, Wu Q, Geller DA, et al. Macrophage metabolism, phenotype, function, and therapy in hepatocellular carcinoma (HCC) [J]. J Transl Med, 2023, 21(1): 815.
|
6 |
Xie Q, Zeng Y, Zhang X, et al. The significance of lipid metabolism reprogramming of tumor-associated macrophages in hepatocellular carcinoma [J]. Cancer Immunol Immunother, 2024, 73(9): 171.
|
7 |
Liu YT, Mao ZW, Ding Y, et al. Macrophages as Targets in Hepatocellular Carcinoma Therapy[J]. Mol Cancer Ther, 2024, 23(6):780-790. doi: 10.1158/1535-7163.MCT-23-0660.PMID: 38310642.
|
8 |
Sezginer O, Unver N. Dissection of pro-tumoral macrophage subtypes and immunosuppressive cells participating in M2 polarization [J]. Inflamm Res, 2024, 73(9): 1411-1423.
|
9 |
Fuchs AL, Costello SM, Schiller SM, et al. Primary human M2 macrophage subtypes are distinguishable by aqueous metabolite profiles [J]. Int J Mol Sci, 2024, 25(4): 2407.
|
10 |
Zhang Q, Sioud M. Tumor-associated macrophage subsets: shaping polarization and targeting [J]. Int J Mol Sci, 2023, 24(8): 7493.
|
11 |
Li P, Ma C, Li J, et al. Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells [J]. J Zhejiang Univ Sci B, 2022, 23(5): 407-422.
|
12 |
Park SM, Chen CJ, Verdon DJ, et al. Proliferating macrophages in human tumours show characteristics of monocytes responding to myelopoietic growth factors [J]. Front Immunol, 2024, 15: 1412076.
|
13 |
Franklin RA, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages [J]. Science, 2014, 344(6186):921-925.
|
14 |
Wang Y, Liu H, Zhang Z, et al. G-MDSC-derived exosomes mediate the differentiation of M-MDSC into M2 macrophages promoting colitis-to-cancer transition [J]. J Immunother Cancer, 2023, 11(6): e006166.
|
15 |
Xun J, Zhou S, Lv Z, et al. Dioscin modulates macrophages polarization and MDSCs differentiation to inhibit tumorigenesis of colitis-associated colorectal cancer [J]. Int Immunopharmacol, 2023, 117: 109839.
|
16 |
Su MT, Kumata S, Endo S, et al. LILRB4 promotes tumor metastasis by regulating MDSCs and inhibiting miR-1 family miRNAs [J]. Oncoimmunology, 2022, 11(1): 2060907.
|
17 |
Zhang C, Sui Y, Liu S, et al. The roles of myeloid-derived suppressor cells in liver disease [J]. Biomedicines, 2024, 12(2): 299.
|
18 |
Ammarah U, Pereira-Nunes A, Delfini M, et al. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer [J]. Mol Oncol, 2024, 18(7): 1739-1758.
|
19 |
Vogel A, Weichhart T. Tissue-resident macrophages - early passengers or drivers in the tumor niche? [J] Curr Opin Biotechnol, 2023, 83: 102984.
|
20 |
Zhao J, Andreev I, Silva HM. Resident tissue macrophages: Key coordinators of tissue homeostasis beyond immunity [J]. Sci Immunol, 2024, 9(94): eadd1967.
|
21 |
Li X, Li R, Miao X, et al. Integrated single cell analysis reveals an atlas of tumor associated macrophages in hepatocellular carcinoma [J]. Inflammation, 2024, 47(6): 2077-2093.
|
22 |
Wang J, Wang Y, Chu Y, et al. Tumor-derived adenosine promotes macrophage proliferation in human hepatocellular carcinoma [J]. J Hepatol, 2021, 74(3): 627-637.
|
23 |
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism [J]. Angiogenesis, 2024, 27(3): 333-349.
|
24 |
Quaranta V, Ballarò C, Giannelli G. Macrophages orchestrate the liver tumor microenvironment [J]. Cancers (Basel), 2024, 16(9): 1772.
|
25 |
Kim DH, Kang YN, Jin J, et al. Glutamine-derived aspartate is required for eIF5A hypusination-mediated translation of HIF-1α to induce the polarization of tumor-associated macrophages [J]. Exp Mol Med, 2024, 56(5): 1123-1136.
|
26 |
Kang FB, Wang L, Li D, et al. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression [J]. Oncol Rep, 2015, 33(1): 274-282.
|
27 |
Ye M, Lu F, Gu D, et al. Hypoxia exosome derived CEACAM5 promotes tumor-associated macrophages M2 polarization to accelerate pancreatic neuroendocrine tumors metastasis via MMP9 [J]. FASEB J, 2024, 38(13): e23762.
|
28 |
Riabov V, Gudima A, Wang N, et al. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis [J]. Front Physiol, 2014, 5: 75.
|
29 |
Wang W, Li T, Cheng Y, et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization [J]. Cancer Cell, 2024, 42(5): 815-832.e12.
|
30 |
G.Kamiyama M, Pozzi A, Yang L, et al. EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival [J]. Oncogene, 2006, 25(53): 7019-7028.
|
31 |
Shao R. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis [J]. Front Physiol, 2013, 4: 122.
|
32 |
Thomann S, Weiler SME, Wei T, et al. YAP-induced Ccl2 expression is associated with a switch in hepatic macrophage identity and vascular remodelling in liver cancer [J]. Liver Int, 2021, 41(12): 3011-3023.
|
33 |
De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors [J]. Cancer Cell, 2005, 8(3): 211-226.
|
34 |
Yao C, Wu S, Kong J, et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies [J]. Cancer Biol Med, 2023, 20(1): 25-43.
|
35 |
Coffelt SB, Tal AO, Scholz A, et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions [J]. Cancer Res, 2010, 70(13): 5270-5280.
|
36 |
Coffelt SB, Chen YY, Muthana M, et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion [J]. J Immunol, 2011, 186(7): 4183-4190.
|
37 |
Hongu T, Pein M, Insua-Rodríguez J, et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs [J]. Nat Cancer, 2022, 3(4): 486-504.
|
38 |
Yang F, He Z, Duan H, et al. Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40 [J]. Nat Commun, 2021, 12(1): 3424.
|
39 |
Harney AS, Arwert EN, Entenberg D, et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA [J]. Cancer Discov, 2015, 5(9): 932-943.
|
40 |
Zhang S, Xie B, Wang L, et al. Macrophage-mediated vascular permeability via VLA4/VCAM1 pathway dictates ascites development in ovarian cancer [J]. J Clin Invest, 2021, 131(3): e140315.
|
41 |
Lu Y, Han G, Zhang Y, et al. M2 macrophage-secreted exosomes promote metastasis and increase vascular permeability in hepatocellular carcinoma [J]. Cell Commun Signal, 2023, 21(1): 299.
|