| 1 |
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119.
|
| 2 |
Maiti AK. Development of biomarkers and molecular therapy based on inflammatory genes in diabetic nephropathy[J]. Int J Mol Sci, 2021, 22(18): 9985.
|
| 3 |
李雅, 王志斌, 刘玮晔, 等. 巨噬细胞与糖尿病肾病[J]. 国际内分泌代谢杂志, 2014, 34(6): 393-396.
|
| 4 |
Luo M, Zhao F, Cheng H, et al. Macrophage polarization: an important role in inflammatory diseases[J]. Front Immunol, 2024, 15: 1352946.
|
| 5 |
杨建环, 王德选, 陈敏广,等. 巨噬细胞移动抑制因子对肾系膜细胞增殖的影响[J]. 中国卫生检验杂志, 2018, 28(1): 58-60.
|
| 6 |
李凡, 王杰, 衣春光, 等. 巨噬细胞募集与极化在糖尿病肾病中的作用机制及中药干预研究进展[J]. 中成药, 2024, 46(12): 4075-4082.
|
| 7 |
苏燚, 宋科. 黄芪甲苷通过调控HIF-1α信号通路调节M2巨噬细胞极化对糖尿病肾病的作用机制研究[J]. 中国比较医学杂志, 2025, 35(7): 25-35.
|
| 8 |
覃好, 朱诗平, 董文豪, 等. 巨噬细胞在糖尿病肾病足细胞凋亡中的作用[J]. 生命的化学, 2023, 43(3): 383-388.
|
| 9 |
Zhang Y, Le X, Zheng S, et al. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization[J]. Stem Cell Res Ther, 2022, 13(1): 171.
|
| 10 |
张德鱼, 于磊, 刘艾芹. 活性维生素D通过STAT-1-TREM-1途径调控M1/M2巨噬细胞表型激活失衡缓解糖尿病肾病中的肾间质纤维化的机制[J]. 临床和实验医学杂志, 2022, 21(15): 1580-1584.
|
| 11 |
杨莉, 李晓玫, 王荣, 等. 单核巨噬细胞对肾小管上皮细胞的活化作用及其机制初探[J]. 中国病理生理杂志, 2002, 18(10): 1217-1221.
|
| 12 |
Yin Q, Tang TT, Lu XY, et al. Macrophage-derived exosomes promote telomerefragility and senescence in tubular epithelial cells by delivering miR-155[J]. Cell Commun Signal, 2024, 22(1): 357.
|
| 13 |
Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J]. Cell Death Differ, 2020, 27(1): 210-226.
|
| 14 |
Jiang WJ, Xu CT, Du CL, et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy[J]. Theranostics, 2022, 12(1): 324-339.
|
| 15 |
闫红茹. KLF4调控巨噬细胞极化对肾小管间质炎症和纤维化的影响及机制研究 [D]. 南京: 东南大学, 2023.
|
| 16 |
Liu JL, Zhang L, Huang Y, et al. Epsin1-mediated exosomal sorting of Dll4 modulates the tubular-macrophage crosstalk in diabetic nephropathy [J]. Mol Ther, 2023, 31(5): 1451-1467.
|
| 17 |
Guo Y, Song Z, Zhou M, et al. Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway[J]. Oncotarget, 2017, 8(32): 53276-53287.
|
| 18 |
Yang H, Xie T, Li D, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway[J]. Mol Metab, 2019, 23: 24-36.
|
| 19 |
Ji L, Chen Y, Wang H, et al. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy[J]. Int J Oncol, 2019, 55(1): 103-115.
|
| 20 |
Ren J, Xu Y, Lu X, et al. Twist1 in podocytes ameliorates podocyte injury and proteinuria by limiting CCL2-dependent macrophage infiltration[J]. JCI Insight, 2021, 6(15): e148109.
|
| 21 |
Shankland SJ, Hugo C, Coats SR, et al. Changes in cell-cycle protein expression during experimental mesangial proliferative glomerulonephritis[J]. Kidney Int, 1996, 50(4): 1230-1239.
|
| 22 |
Zhu Q, Zhu M, Xu X, et al. Exosomes from high glucose–treated macrophages activate glomerular mesangial cells via TGF‐β1/Smad3 pathway in vivo and in vitro[J]. FASEB J, 2019, 33(8): 9279-9290.
|
| 23 |
Liu Y, Li X, Zhao M, et al. Macrophage-derived exosomes promote activation of NLRP3 inflammasome and autophagy deficiency of mesangial cells in diabetic nephropathy[J]. Life Sci, 2023, 330: 121991.
|
| 24 |
鲁盈, 杨汝春. OX-LDL诱导活化巨噬细胞对肾小球系膜细胞的损伤及水蛭素的干预 [C]//中华中医药学会中医药学术发展大会论文集, 2005: 708-709.
|
| 25 |
Rohm TV, Castellani Gomes Dos Reis F, Isaac R, et al. Adipose tissue macrophages secrete small extracellular vesicles that mediate rosiglitazone-induced insulin sensitization [J]. Nat Metab, 2024, 6(5): 880-898.
|
| 26 |
Zhang C, Zhang Y, Zhang C, et al. Pioglitazone increases VEGFR3 expression and promotes activation of M2 macrophages via the peroxisome proliferator-activated receptor γ[J]. Mol Med Rep, 2019, 19(4): 2740-2748.
|
| 27 |
Liu H, Duan C, Yang X, et al. Metformin suppresses calcium oxalate crystal-induced kidney injury by promoting Sirt1 and M2 macrophage-mediated anti-inflammatory activation[J]. Signal Transduct Target Ther, 2023, 8(1): 38.
|
| 28 |
Bendotti G, Montefusco L, Lunati ME, et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists[J]. Pharmacol Res, 2022, 182: 106320.
|
| 29 |
Yuan Y, Sun M, Jin Z, et al. Dapagliflozin ameliorates diabetic renal injury through suppressing the self-perpetuating cycle of inflammation mediated by HMGB1 feedback signaling in the kidney[J]. Eur J Pharmacol, 2023, 943: 175560.
|
| 30 |
Xu L, Nagata N, Nagashimada M, et al. SGLT2 Inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice[J]. EBioMedicine, 2017, 20: 137-149.
|
| 31 |
Kim YJ, Jin J, Kim DH, et al. SGLT2 inhibitors prevent LPS-induced M1 macrophage polarization and alleviate inflammatory bowel disease by downregulating NHE1 expression[J]. Inflamm Res, 2023, 72(10-11): 1981-1997.
|
| 32 |
Xu L, Nagata N, Chen G, et al. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet[J]. BMJ Open Diabetes Res Care, 2019, 7(1): e000783.
|
| 33 |
Barrera-Chimal J, Estrela GR, Lechner SM, et al. The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling [J]. Kidney Inte, 2018, 93(6): 1344-1355.
|
| 34 |
Yu W, Wang H, Ren X, et al. Experimental study of leflunomide on renal protective effect and on inflammatory response of streptozotocin induced diabetic rats[J]. Nephrology, 2012, 17(4): 380-389.
|
| 35 |
Jianbin X, Peng D, Jing Z, et al. (5R)-5-hydroxytriptolide ameliorates diabetic kidney damage by inhibiting macrophage infiltration and its cross-talk with renal resident cells[J]. Int Immunopharmacol, 2024, 126: 111253.
|
| 36 |
Wu Y, Wang Y, Qi X, et al. Increased Macrophage Activation Inhibited by Tacrolimus in the Kidney of Diabetic Rats[J]. Nephron Exp Nephrol, 2014, 128(1-2): 46-56.
|
| 37 |
Seo JW, Kim YG, Lee SH, et al. Mycophenolate mofetil ameliorates diabetic nephropathy in db/db mice[J]. BioMed Res Int, 2015, 2015: 1-11.
|
| 38 |
Zhang C, Zhang Y, Zhang C, et al. Pioglitazone increases VEGFR3 expression andpromotes activation of M2 macrophages via the peroxisome proliferator-activated receptor γ[J]. Mol Med Rep, 2019, 124(6): 389-398.
|
| 39 |
Czopek A, Moorhouse R, Gallacher PJ, et al. Endothelin blockade prevents the long-term cardiovascular and renal sequelae of acute kidney injury in mice[J]. Sci Transl Med, 2022, 14(675): eabf5074.
|
| 40 |
Zhang XL, Guo YF, Song ZX, et al. Vitamin D prevents podocyte injury via regulation of macrophage M1/M2 phenotype in diabetic nephropathy rats[J]. Endocrinology, 2014, 155(12): 4939-4950.
|
| 41 |
Zhang X, Zhao Y, Zhu X, et al. Active vitamin D regulates macrophage M1/M2 phenotypes via the STAT‐1‐TREM‐1 pathway in diabetic nephropathy[J]. J Cell Physiol, 2019, 234(5): 6917-6926.
|
| 42 |
Tang S, Tan J, Yang S, et al. Paricalcitol ameliorates diabetic nephropathy by promoting EETs and M2 macrophage polarization and inhibiting inflammation by regulating VDR/CYP2J2 axis[J]. FASEB J, 2024, 38(20): e70108.
|
| 43 |
Lee WJ, Liu SH, Chiang CK, et al. Aryl hydrocarbon receptor deficiency attenuates oxidative stress-related mesangial cell activation and macrophage infiltration and extracellular matrix accumulation in diabetic nephropathy[J]. Antioxid Redox Signal, 2016, 24(4): 217-231.
|
| 44 |
Du Q, Fu YX, Shu AM, et al. Loganin alleviates macrophage infiltration and activation by inhibiting the MCP-1/CCR2 axis in diabetic nephropathy[J]. Life Sciences, 2021, 272: 118808.
|
| 45 |
浦强, 徐巍龙, 李楠, 等. 黄葵素抑制巨噬细胞浸润和活化改善db/db小鼠肾纤维化实验研究[J]. 天然产物研究与开发, 2019, 31(11): 1887-1895.
|
| 46 |
罗先荣, 彭家清, 熊燕, 等. 积雪草酸对糖尿病肾病大鼠肾功能及巨噬细胞表面活化标志物水平的影响[J]. 临床与病理杂志, 2019, 39(5): 920-927.
|
| 47 |
陈璟, 杨小艺, 陈静, 等. 银杏叶提取物对糖尿病肾病模型小鼠肾脏炎症的抑制作用及机制[J]. 中国药房, 2024, 35(2): 186-191.
|
| 48 |
胡相卡, 刘作栋, 赵苗鑫, 等. EGCG对糖尿病大鼠肾脏的保护作用及机制研究[J]. 石河子大学学报(自然科学版), 2022, 40(2): 251-258.
|
| 49 |
Liu J, Zhang Y, Sheng H, et al. Hyperoside suppresses renal inflammation by regulating macrophage polarization in mice with type 2 diabetes mellitus[J]. Front Immunol 2021, 12: 733808.
|
| 50 |
Cao Y, Xiong J, Guan X, et al. Paeoniflorin suppresses kidney inflammation by regulating macrophage polarization via KLF4-mediated mitophagy[J]. Phytomedicine, 2023, 116: 154901.
|