[1] |
World Health Organization. Diabetes programme: diabetes [EB/OL]. Accessed, 2016-09-12.
URL
|
[2] |
Molitch ME, DeFronzo RA, Franz MJ, et al. American Diabetes Association: Nephropathy in diabetes [J]. Diabetes Care, 2004, 27(Suppl 1): S79-S83.
|
[3] |
张晓华, 王利华, 李静, 等. 2010-2013年山西省新进入血液透析患者的流行病学调查分析 [J]. 中华医学杂志, 2014, 94(22): 1714-1717.
|
[4] |
Liu Y, Tang SC. Recent progress in stem cell therapy for diabetic nephropathy [J]. Kidney Dis (Basel), 2016, 2(1): 20-27.
|
[5] |
Ginevri F, Piccotti E, Alinovi R, et al. Reversible tubular proteinuria precedes microalbuminuria and correlates with the metabolic status in diabetic children [J]. Pediatr Nephrol, 1993, 7(1): 23-26.
|
[6] |
Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? [J]. Kidney Int, 1999, 56(5): 1627-1637.
|
[7] |
Bjornstad P, Lanaspa MA, Ishimoto T, et al. Fructose and uric acid in diabetic nephropathy [J]. Diabetologia, 2015, 58(9): 1993-2002.
|
[8] |
Kawasaki T, Akanuma H, Yamanouchi T. Increased fructose concentrations in blood and urine in patients with diabetes [J]. Diabetes Care, 2002, 25(2): 353-357.
|
[9] |
Kawasaki T, Igarashi K, Ogata N, et al. Markedly increased serum and urinary fructose concentrations in diabeticpatients with ketoacidosis or ketosis [J]. Acta Diabetol, 2012, 49(2): 119-123.
|
[10] |
Lanaspa MA, Ishimoto T, Cicerchi C, et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy [J]. J Am Soc Nephrol, 2014, 25(11): 2526-2538.
|
[11] |
Ludvigson MA, Waites GM, Hamilton DW. Immunocytochemical evidence for the specific localization of aldose reductase in rat Sertoli cells [J]. Biol Reprod, 1982, 26(2): 311-317.
|
[12] |
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus [J]. Front Pharmacol, 2012, 3: 87.
|
[13] |
González RG, Barnett P, Aguayo J, et al. Direct measurement of polyol pathway activity in the ocular lens [J]. Diabetes, 1984, 33(2): 196-199.
|
[14] |
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity [J]. Diabetes, 2013, 62(10): 3307-3315.
|
[15] |
Tilton RG, Chang K, Nyengaard JR, et al. Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats [J]. Diabetes, 1995, 44(2): 234-242.
|
[16] |
Ghahary A, Chakrabarti S, Sima AA, et al. Effect of insulin and statil on aldose reductase expression in diabetic rats [J]. Diabetes, 1991, 40(11): 391-396.
|
[17] |
Nakayama T, Kosugi T, Gersch M, et al. Dietary fructose causes tubulointerstitial injury in the normal rat kidney [J]. Am J Physiol Renal Physiol, 2010, 298(3): F712-720.
|
[18] |
Aoyama M, Isshiki K, Kume S, et al. Fructose induces tubulointerstitial injury in the kidney of mice [J]. Biochem Biophys Res Commun, 2012, 419(2): 244-249.
|
[19] |
Gersch MS, Mu W, Cirillo P, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease [J]. Am J Physiol Renal Physiol, 2007, 293(4): F1256-1261.
|
[20] |
Glushakova O, Kosugi T, Roncal C, et al. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells [J]. J Am Soc Nephrol, 2008, 19(9): 1712-1720.
|
[21] |
Shinozaki K, Kashiwagi A, Nishio Y, et al. Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2-imbalance in insulin-resistant rat aorta [J]. Diabetes, 1999, 48(12): 2437-2445.
|
[22] |
Stirpe F, Della Corte E, Bonetti E, et al. Fructose-induced hyperuricaemia [J]. Lancet, 1970, 2(7686): 1310-1311.
|
[23] |
Cox CL, Stanhope KL, Schwarz JM, et al. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans [J]. Nutr Metab (Lond), 2012, 9(1): 68.
|
[24] |
Choi JW, Ford ES, Gao X, et al. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey [J]. Arthritis Rheum, 2008, 59(1): 109-116.
|
[25] |
Björkman O, Felig P. Role of the kidney in the metabolism of fructose in 60-hour fasted humans [J]. Diabetes, 1982, 31(6 Pt 1): 516-520.
|
[26] |
List JF, Whaley JM. Glucosedynamicsandmechanisticimpl icationsofSGLT2inhibitorsinanimals and humans [J]. Kidney Int, 2011, 79(Suppl 120): S20-27.
|
[27] |
Doctor RB, Mandel LJ. Minimal role of xanthine oxidase and oxygen free radicals in rat renal tubular reoxygenation injury [J]. J Am Soc Nephrol, 1991, 1(7): 959-969.
|
[28] |
Cirillo P, Gersch MS, Mu W, et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells [J]. J Am Soc Nephrol, 2009, 20(3): 545-553.
|
[29] |
Ficociello LH, Rosolowsky ET, Niewczas MA, et al. High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: results of a 6-year follow-up [J]. Diabetes Care, 2010, 33(6): 1337-1343.
|
[30] |
Jalal DI, Rivard CJ, Johnson RJ, et al. Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the Coronary Artery Calcification in Type 1 Diabetes study [J]. Nephrol Dial Transplant, 2010, 5(6): 1865-1869.
|
[31] |
Hovind P, Rossing P, Tarnow L, et al. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study [J]. Diabetes, 2009, 58(7): 1668-1671.
|
[32] |
Zoppini G, Targher G, Chonchol M, et al. Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function [J]. Diabetes Care, 2012, 35(1): 99-104.
|
[33] |
Altemtam N, Russell J, El Nahas M. A study of the natural history of diabetic kidney disease (DKD) [J]. Nephrol Dial Transplant, 2012, 27(5): 1847-1854.
|
[34] |
Momeni A, Shahidi S, Seirafian S, et al. Effect of allopurinol in decreasing proteinuria in type 2 diabetic patients [J]. Iran J Kidney Dis, 2010, 4(2): 128-132.
|
[35] |
Liu P, Chen Y, Wang B, et al. Allopurinol treatment improves renal function in patients with type 2 diabetes and asymptomatic hyperuricemia: 3-year randomized parallel-controlled study [J]. Clin Endocrinol(Oxf), 2015, 83(4): 475-482.
|
[36] |
Kosugi T, Nakayama T, Heinig M, et al. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice [J]. Am J Physiol Renal Physiol, 2009, 297(2): F481-488.
|
[37] |
Kim SM, Choi YW, Seok HY, et al. Reducingserum uric acid attenuates TGF-β1-induced profibrogenic progression in type 2 diabetic nephropathy [J]. Nephron Exp Nephrol, 2012, 121(3-4): e109-121.
|
[38] |
Verzola D, Ratto E, Villaggio B, et al. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4 [J]. PLoS One, 2014, 9(12): e115210.
|