切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2017, Vol. 11 ›› Issue (16) : 2144 -2148. doi: 10.3877/cma.j.issn.1674-0785.2017.16.008

所属专题: 文献

综述

内源性果糖在糖尿病肾病小管损伤中的作用及其机制
李小彦1, 赵乃倩2,(), 韩金祥2, 冯子凌3, 王丽2   
  1. 1. 030600 晋中市第一人民医院感染性疾病科
    2. 030001 太原,山西医科大学第二医院老年病科
    3. 030600 晋中市第一人民医院神经内科
  • 收稿日期:2017-03-27 出版日期:2017-08-15
  • 通信作者: 赵乃倩
  • 基金资助:
    山西省自然科学基金资助课题(2014011043-1); 晋中市社会发展项目(S1601)

Role and mechanism of endogenous fructose in renal tubular injury in diabetic nephropathy

Xiaoyan Li1, Naiqian Zhao2,(), Jinxiang Han2, Ziling Feng3, Li Wang2   

  1. 1. Department of Infectious Diseases, Jinzhong First People′s Hospital of Shanxi Province, Jinzhong 030600, China
    2. Department of Geriatrics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
    3. Department of Neurology, Jinzhong First People′s Hospital of Shanxi Province, Jinzhong 030600, China
  • Received:2017-03-27 Published:2017-08-15
  • Corresponding author: Naiqian Zhao
  • About author:
    Corresponding author: Zhao Naiqian, Email:
引用本文:

李小彦, 赵乃倩, 韩金祥, 冯子凌, 王丽. 内源性果糖在糖尿病肾病小管损伤中的作用及其机制[J]. 中华临床医师杂志(电子版), 2017, 11(16): 2144-2148.

Xiaoyan Li, Naiqian Zhao, Jinxiang Han, Ziling Feng, Li Wang. Role and mechanism of endogenous fructose in renal tubular injury in diabetic nephropathy[J]. Chinese Journal of Clinicians(Electronic Edition), 2017, 11(16): 2144-2148.

在糖尿病血糖升高的情况下,葡萄糖代谢的多元醇途径被激活,内源性果糖生成增加。果糖在肝细胞和肾小管上皮细胞等靶细胞中代谢时,可快速而不可逆地引起细胞内三磷酸腺苷(ATP)消耗和嘌呤核苷酸转换,并生成终产物尿酸,这一反应过程也称为果糖-尿酸轴。尿酸可直接作用于肾小管上皮细胞和管周内皮细胞,引起肾小管损伤。由于糖尿病性肾小管损伤较肾小球损伤出现更早,且与肾功能进行性减退的关系更为密切,果糖-尿酸轴可能是糖尿病肾病(DN)的一种全新而重要的发病机制,对于发掘防治DN的新疗法、改善DN的预后具有重要意义。

In diabetes, hyperglycemia is associated with activation of the polyol pathway, in which fructose is endogenously overproduced. When fructose is metabolized in hepatocytes and tubular epithelial cells, ATP depletion and purine nucleotide turnover occur rapidly and irreversibly, and uric acid is eventually generated. The metabolism of fructose to uric acid is also known as the fructose-uric acid axis. Uric acid derived from endogenous fructose could directly impair renal tubular epithelial cells and peritubular capillary endothelial cells, resulting in diabetic tubulopathy. In the course of diabetic nephropathy, tubular injury may be induced earlier than glomerular injury and may be more closely associated with renal function. For this reason, the fructose-uric acid axis as a novel mechanism for the development of diabetic tubular injury provides new insights into the pathogenesis and treatment of diabetic nephropathy.

图1 葡萄糖代谢的多元醇途径
图2 果糖损伤肾小管上皮细胞和管周内皮细胞的示意图(改编自参考文献[7])
图3 内源性果糖的来源及其诱导尿酸生成示意图
图4 果糖通过诱导尿酸生成导致肾小管损伤的示意图(改编自参考文献[7])
[1]
World Health Organization. Diabetes programme: diabetes [EB/OL]. Accessed, 2016-09-12.

URL    
[2]
Molitch ME, DeFronzo RA, Franz MJ, et al. American Diabetes Association: Nephropathy in diabetes [J]. Diabetes Care, 2004, 27(Suppl 1): S79-S83.
[3]
张晓华, 王利华, 李静, 等. 2010-2013年山西省新进入血液透析患者的流行病学调查分析 [J]. 中华医学杂志, 2014, 94(22): 1714-1717.
[4]
Liu Y, Tang SC. Recent progress in stem cell therapy for diabetic nephropathy [J]. Kidney Dis (Basel), 2016, 2(1): 20-27.
[5]
Ginevri F, Piccotti E, Alinovi R, et al. Reversible tubular proteinuria precedes microalbuminuria and correlates with the metabolic status in diabetic children [J]. Pediatr Nephrol, 1993, 7(1): 23-26.
[6]
Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? [J]. Kidney Int, 1999, 56(5): 1627-1637.
[7]
Bjornstad P, Lanaspa MA, Ishimoto T, et al. Fructose and uric acid in diabetic nephropathy [J]. Diabetologia, 2015, 58(9): 1993-2002.
[8]
Kawasaki T, Akanuma H, Yamanouchi T. Increased fructose concentrations in blood and urine in patients with diabetes [J]. Diabetes Care, 2002, 25(2): 353-357.
[9]
Kawasaki T, Igarashi K, Ogata N, et al. Markedly increased serum and urinary fructose concentrations in diabeticpatients with ketoacidosis or ketosis [J]. Acta Diabetol, 2012, 49(2): 119-123.
[10]
Lanaspa MA, Ishimoto T, Cicerchi C, et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy [J]. J Am Soc Nephrol, 2014, 25(11): 2526-2538.
[11]
Ludvigson MA, Waites GM, Hamilton DW. Immunocytochemical evidence for the specific localization of aldose reductase in rat Sertoli cells [J]. Biol Reprod, 1982, 26(2): 311-317.
[12]
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus [J]. Front Pharmacol, 2012, 3: 87.
[13]
González RG, Barnett P, Aguayo J, et al. Direct measurement of polyol pathway activity in the ocular lens [J]. Diabetes, 1984, 33(2): 196-199.
[14]
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity [J]. Diabetes, 2013, 62(10): 3307-3315.
[15]
Tilton RG, Chang K, Nyengaard JR, et al. Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats [J]. Diabetes, 1995, 44(2): 234-242.
[16]
Ghahary A, Chakrabarti S, Sima AA, et al. Effect of insulin and statil on aldose reductase expression in diabetic rats [J]. Diabetes, 1991, 40(11): 391-396.
[17]
Nakayama T, Kosugi T, Gersch M, et al. Dietary fructose causes tubulointerstitial injury in the normal rat kidney [J]. Am J Physiol Renal Physiol, 2010, 298(3): F712-720.
[18]
Aoyama M, Isshiki K, Kume S, et al. Fructose induces tubulointerstitial injury in the kidney of mice [J]. Biochem Biophys Res Commun, 2012, 419(2): 244-249.
[19]
Gersch MS, Mu W, Cirillo P, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease [J]. Am J Physiol Renal Physiol, 2007, 293(4): F1256-1261.
[20]
Glushakova O, Kosugi T, Roncal C, et al. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells [J]. J Am Soc Nephrol, 2008, 19(9): 1712-1720.
[21]
Shinozaki K, Kashiwagi A, Nishio Y, et al. Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2-imbalance in insulin-resistant rat aorta [J]. Diabetes, 1999, 48(12): 2437-2445.
[22]
Stirpe F, Della Corte E, Bonetti E, et al. Fructose-induced hyperuricaemia [J]. Lancet, 1970, 2(7686): 1310-1311.
[23]
Cox CL, Stanhope KL, Schwarz JM, et al. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans [J]. Nutr Metab (Lond), 2012, 9(1): 68.
[24]
Choi JW, Ford ES, Gao X, et al. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey [J]. Arthritis Rheum, 2008, 59(1): 109-116.
[25]
Björkman O, Felig P. Role of the kidney in the metabolism of fructose in 60-hour fasted humans [J]. Diabetes, 1982, 31(6 Pt 1): 516-520.
[26]
List JF, Whaley JM. Glucosedynamicsandmechanisticimpl icationsofSGLT2inhibitorsinanimals and humans [J]. Kidney Int, 2011, 79(Suppl 120): S20-27.
[27]
Doctor RB, Mandel LJ. Minimal role of xanthine oxidase and oxygen free radicals in rat renal tubular reoxygenation injury [J]. J Am Soc Nephrol, 1991, 1(7): 959-969.
[28]
Cirillo P, Gersch MS, Mu W, et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells [J]. J Am Soc Nephrol, 2009, 20(3): 545-553.
[29]
Ficociello LH, Rosolowsky ET, Niewczas MA, et al. High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: results of a 6-year follow-up [J]. Diabetes Care, 2010, 33(6): 1337-1343.
[30]
Jalal DI, Rivard CJ, Johnson RJ, et al. Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the Coronary Artery Calcification in Type 1 Diabetes study [J]. Nephrol Dial Transplant, 2010, 5(6): 1865-1869.
[31]
Hovind P, Rossing P, Tarnow L, et al. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study [J]. Diabetes, 2009, 58(7): 1668-1671.
[32]
Zoppini G, Targher G, Chonchol M, et al. Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function [J]. Diabetes Care, 2012, 35(1): 99-104.
[33]
Altemtam N, Russell J, El Nahas M. A study of the natural history of diabetic kidney disease (DKD) [J]. Nephrol Dial Transplant, 2012, 27(5): 1847-1854.
[34]
Momeni A, Shahidi S, Seirafian S, et al. Effect of allopurinol in decreasing proteinuria in type 2 diabetic patients [J]. Iran J Kidney Dis, 2010, 4(2): 128-132.
[35]
Liu P, Chen Y, Wang B, et al. Allopurinol treatment improves renal function in patients with type 2 diabetes and asymptomatic hyperuricemia: 3-year randomized parallel-controlled study [J]. Clin Endocrinol(Oxf), 2015, 83(4): 475-482.
[36]
Kosugi T, Nakayama T, Heinig M, et al. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice [J]. Am J Physiol Renal Physiol, 2009, 297(2): F481-488.
[37]
Kim SM, Choi YW, Seok HY, et al. Reducingserum uric acid attenuates TGF-β1-induced profibrogenic progression in type 2 diabetic nephropathy [J]. Nephron Exp Nephrol, 2012, 121(3-4): e109-121.
[38]
Verzola D, Ratto E, Villaggio B, et al. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4 [J]. PLoS One, 2014, 9(12): e115210.
[1] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[2] 王丽媛, 张瑞芳, 王向托, 王雅霄. 老年高尿酸血症患者血清白细胞介素-23、尿酸、单核细胞趋化蛋白-1与肾功能损伤的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 145-149.
[3] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[4] 雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.
[5] 徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.
[6] 贾英民, 张术姣, 耿运玲, 曹梓静, 王耀献, 吕仁和, 刘玉宁, 刘伟敬. 蝉花菌丝联合海昆肾喜胶囊对糖尿病肾小管上皮细胞自噬-溶酶体通路的影响[J]. 中华肾病研究电子杂志, 2022, 11(04): 212-218.
[7] 何彬, 王静. 彩色多普勒超声血流参数、血清尿酸、胱抑素C对短暂性脑缺血发作患者颈动脉狭窄的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 289-294.
[8] 刁正文, 徐愈畅, 张杰, 张华军, 李秋霖, 陈卉. β-七叶皂苷钠联合甘油果糖治疗脑出血的临床效果分析[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 32-37.
[9] 王丽芳, 宁武, 丁艳, 张彦霞, 马豆豆, 卢哲敏, 韩芃, 李超然, 王宽婷. 北京市石景山区中学生的血尿酸与血清25(OH)D3水平的相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(08): 865-869.
[10] 李昌艳, 顾芳, 刘娟, 唐明敏. 非布司他治疗慢性肾脏病伴发高尿酸血症的疗效及预后影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(03): 279-284.
[11] 朱艺平, 陈一平, 赵艳英, 陆玮玮, 牙侯军, 苏复霞. 二十味沉香丸调控糖尿病肾病大鼠肠道菌群益生菌构成的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 572-578.
[12] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[13] 王慧卿, 李银玉, 张继敏, 黄正丽, 孙喜明, 薛少青, 焦爱富, 赵慧媛, 尉杰忠. 血清adipsin及皮下脂肪面积与早期糖尿病肾病的相关性分析[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 256-262.
[14] 沈地, 权莉, 梁存禹, 孟齐, 艾比拜·玉素甫. 葡萄糖目标范围内时间与2型糖尿病患者尿微量白蛋白水平的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 249-255.
[15] 何圣清, 袁唯唯, 孟莞瑞, 符青松, 郑晓斌, 武红梅. 达格列净联合二甲双胍治疗对早期2型糖尿病肾病患者肾小管功能和血清Klotho的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 236-242.
阅读次数
全文


摘要