切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (01) : 57 -61. doi: 10.3877/cma.j.issn.1674-0785.2018.01.011

所属专题: 文献

综述

参与脓毒症调控的信号通路的研究进展
周佳伟1, 姜琴1, 侯林义1, 付玉梅1, 张文凯1,()   
  1. 1. 030001 太原,山西医科大学第二医院重症医学科
  • 收稿日期:2017-07-30 出版日期:2018-01-01
  • 通信作者: 张文凯
  • 基金资助:
    山西省归国留学项目(2011-105); 山西省太原市科技项目(12016905)

Signaling pathways involved in inflammatory response in sepsis

Jiawei Zhou1, Qin Jiang1, Linyi Hou1, Yumei Fu1, Wenkai Zhang1,()   

  1. 1. Department of Intensive Care Unit, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2017-07-30 Published:2018-01-01
  • Corresponding author: Wenkai Zhang
  • About author:
    Corresponding author: Zhang Wenkai, Email:
引用本文:

周佳伟, 姜琴, 侯林义, 付玉梅, 张文凯. 参与脓毒症调控的信号通路的研究进展[J]. 中华临床医师杂志(电子版), 2018, 12(01): 57-61.

Jiawei Zhou, Qin Jiang, Linyi Hou, Yumei Fu, Wenkai Zhang. Signaling pathways involved in inflammatory response in sepsis[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(01): 57-61.

脓毒症是外科重症监护病房(ICU)患者死亡的原因之一,其因高患病率、高死亡率、高费用,而且缺乏有效的针对性治疗策略,成为威胁人类健康的重要疾病之一。脓毒症的发生发展与促炎和抗炎反应失衡密切相关,但是具体调控机制尚不清楚。因此全面了解脓毒症患者炎症反应的发生机制,参与炎症反应细胞的各种重要的信号转导通路[核因子-κB通路、丝裂原激活的蛋白激酶(MAPK)通路、酪氨酸激酶-信号转导和转录激活子(JAK-STAT)通路、磷脂酰肌醇3激酶/丝苏氨酸蛋白激酶(PI3K/AKT)通路、糖原合成酶-3(GSK-3)通路、胆碱能抗炎通路(CAP)]和细胞因子的表达,对于找到有效特异性高的脓毒症预防和治疗措施具有重大的意义。本文就目前参与脓毒症反应的各种信号通路以及各信号通路之间交互作用进行综述。

Sepsis is a common cause of death of patients in surgical intensive care unit (ICU). Because of its high prevalence, high mortality, and lack of effective therapy, sepsis has become one of important diseases that threaten human health. The development of sepsis is closely related to the imbalance of pro-inflammatory and anti-inflammatory responses. However, the underlying regulatory mechanism is still largely unclear. Therefore, a comprehensive understanding of the important signaling transduction pathways involved in inflammatory response in patients with sepsis, including nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), Janus kinase-signal transducer and activators of transcription (JAK-STAT), phosphatidylinositol 3 kinase/serine- threonine protein kinase (PI3K/AKT), glycogen synthase kinase-3 (GSK-3), the cholinergic anti-inflammatory pathway (CAP), and the expression of cytokines, is of great significance for finding highly effective preventive and therapeutic strategies for sepsis. In this article, we summarize the signaling pathways involved in inflammatory response in sepsis and the interactions of these signaling pathways.

1
Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000 [J]. N Engl J Med, 2003, 348(16): 1546-1554.
2
Coopersmith CM, Wunsch H, Fink MP, et al. A comparison of critical care research funding and the financial burden of critical illness in the United States [J]. Crit Care Med, 2012, 40(4): 1072-1079.
3
Cheng B, Xie G, Yao S, et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China [J]. Crit Care Med, 2007, 35(11): 2538-2546.
4
Yang WS, Park YC, Kim JH, et al. Nanostructured, self-assembling peptide K5 blocks TNF-alpha and PGE(2) production by suppression of the AP-1/p38 pathway [J]. Mediators Inflamm, 2012, 2012: 489810.
5
Byeon SE, Lee J, Yoo BC, et al. p38-targeted inhibition of interleukin-12 expression by ethanol extract from Cordyceps bassiana in lipopolysaccharide-activated macrophages [J]. Immunopharmacol Immunotoxicol, 2011, 33(1): 90-96.
6
Garcia J, Lemercier B, Roman-Roman S, et al. A Mycoplasma fermentans-derived synthetic lipopeptide induces AP-1 and NF-kappaB activity and cytokine secretion in macrophages via the activation of mitogen-activated protein kinase pathways [J]. J Biol Chem, 1998, 273(51): 34391-34398.
7
Amirouche A, Tadesse H, Lunde JA, et al. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics [J]. Hum Mol Genet, 2013, 22(15): 3093-3111.
8
Pietersma A, Tilly BC, Gaestel M, et al. p38 mitogen activated protein kinase regulates endothelial VCAM-1 expression at the post-transcriptional level [J]. Biochem Biophys Res Commun, 1997, 230(1): 44-48.
9
Ren F, Zhang HY, Piao ZF, et al. Inhibition of glycogen synthase kinase 3b activity regulates Toll-like receptor 4-mediated liver inflammation [J]. Zhonghua gan zang bing za zhi, 2012, 20(9): 693-697.
10
Lim AK, Tesch GH. Inflammation in diabetic nephropathy [J]. Mediators Inflamm, 2012, 2012: 146154.
11
Ko HM, Joo SH, Kim P, et al. Effects of Korean Red Ginseng extract on tissue plasminogen activator and plasminogen activator inhibitor-1 expression in cultured rat primary astrocytes [J]. J Ginseng Res, 2013, 37(4): 401-412.
12
Guma M, Hammaker D, Topolewski K, et al. Antiinflammatory functions of p38 in mouse models of rheumatoid arthritis: advantages of targeting upstream kinases MKK-3 or MKK-6 [J]. Arthritis Rheum, 2012, 64(9): 2887-2895.
13
Jackson JR, Bolognese B, Hillegass L, et al. Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models [J]. J Pharmacol Exp Ther, 1998, 284(2): 687-692.
14
Brando Lima AC, Machado AL, Simon P, et al. Anti-inflammatory effects of LASSBio-998, a new drug candidate designed to be a p38 MAPK inhibitor, in an experimental model of acute lung inflammation [J]. Pharmacol Rep, 2011, 63(4): 1029-1039.
15
Menghini R, Casagrande V, Menini S, et al. TIMP3 overexpression in macrophages protects from insulin resistance, adipose inflammation, and nonalcoholic fatty liver disease in mice [J]. Diabetes, 2012, 61(2): 454-462.
16
Koul HK, Pal M, Koul S. Role of p38 MAP kinase signal transduction in solid tumors [J]. Genes Cancer, 2013, 4(9-10): 342-359.
17
Huang X, Zeng Y, Jiang Y, et al. Lipopolysaccharide-Binding Protein Downregulates Fractalkine through Activation of p38 MAPK and NF-kappaB [J]. Mediators Inflamm, 2017, 2017: 9734837.
18
Ghosh S, Hayden MS. Celebrating 25 years of NF-kappaB research [J]. Immunol Rev, 2012, 246(1): 5-13.
19
Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation [J]. Nat rev Immunol, 2008, 8(11): 837-848.
20
Arnalich F, Garcia-Palomero E, López J, et al. Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients with sepsis [J]. Infect Immun, 2000, 68(4): 1942-1945.
21
Gustin JA, Ozes ON, Akca H, et al. Cell Type-specific expression of the IκB kinases determines the significance of phosphatidylinositol 3-Kinase/Akt signaling to NF-κB activation [J]. J Biol Chem, 2004, 279(3): 1615-1620.
22
Zhang X, Li N, Shao H, et al. Methane limit LPS-induced NF-kappaB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3beta-mediated IL-10 expression [J]. Sci Rep, 2016, 6: 29359.
23
Rehani K, Scott DA, Renaud D, et al. Cotinine-induced convergence of the cholinergic and PI3 kinase-dependent anti-inflammatory pathways in innate immune cells [J]. Biochim Biophys Acta, 2008, 1783(3): 375-382.
24
Williams DL, Ozment-Skelton T, Li C. Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury [J]. Shock, 2006, 25(5): 432-439.
25
Andrejko KM, Raj NR, Kim PK, et al. IL-6 modulates sepsis-induced decreases in transcription of hepatic organic anion and bile acid transporters [J]. Shock, 2008, 29(4): 490-496.
26
Hui L, Yao Y, Wang S, et al. Inhibition of Janus kinase 2 and signal transduction and activator of transcription 3 protect against cecal ligation and puncture-induced multiple organ damage and mortality [J]. J Trauma, 2009, 66(3): 859-865.
27
Kim JH, Kim SJ, Lee IS, et al. Bacterial endotoxin induces the release of high mobility group box 1 via the IFN-beta signaling pathway [J]. J Immuno, 2009, 182(4): 2458-2466.
28
Guarda G, Braun M, Staehli F, et al. Type I interferon inhibits interleukin-1 production and inflammasome activation [J]. Immunity, 2011, 34(2): 213-223.
29
Rauch I, Muller M, Decker T. The regulation of inflammation by interferons and their STATs [J]. JAKSTAT, 2013, 2(1): e23820.
30
Majumder S, Zhou LZ, Chaturvedi P, et al. p48/STAT-1alpha-containing complexes play a predominant role in induction of IFN-gamma-inducible protein, 10 kDa (IP-10) by IFN-gamma alone or in synergy with TNF-alpha [J]. J Immunol, 1998, 161(9): 4736-4744.
31
Kim MO, Suh HS, Brosnan CF, et al. Regulation of RANTES/CCL5 expression in human astrocytes by interleukin-1 and interferon-beta [J]. J neurochem, 2004, 90(2): 297-308.
32
Agarwal D, Dange RB, Raizada MK, et al. Angiotensin II causes imbalance between pro- and anti-inflammatory cytokines by modulating GSK-3beta in neuronal culture [J]. Br J Pharmacol, 2013, 169(4): 860-874.
33
Pavlov VA, Parrish WR, Rosas-Ballina M, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway [J]. Brain Behav Immun, 2009, 23(1): 41-45.
34
Pontet J, Contreras P, Curbelo A, et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients [J]. J Crit Care, 2003, 18(3): 156-163.
35
van Westerloo DJ, Giebelen IA, Florquin S, et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis [J]. J Infect Dis, 2005, 191(12): 2138-2148.
36
Kessler W, Traeger T, Westerholt A, et al. The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis [J]. Langenbecks Arch Surg, 2006, 391(2): 83-87.
37
Hofer S, Eisenbach C, Lukic IK, et al. Pharmacologic cholinesterase inhibition improves survival in experimental sepsis [J]. Crit Care Med, 2008, 36(2): 404-408.
38
Fodale V, Santamaria LB. Cholinesterase inhibitors improve survival in experimental sepsis: a new way to activate the cholinergic anti-inflammatory pathway [J]. Crit Care Med, 2008, 36(2): 622-623.
[1] 孟建标, 张庚, 焦燕娜. 脓毒症合并心功能障碍患者早期肠道微生态改变的探讨[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 279-285.
[2] 陈宇, 冯芳, 张露, 刘健. 基于生物信息学分析筛选脓毒症心肌病关键致病基因[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 286-291.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[5] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[6] 窦上文, 邓欢, 刘邦锋, 岳高远志, 朱华财, 刘永达. 术前复查尿培养在预测微通道经皮肾镜取石术相关感染并发症中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 361-366.
[7] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[8] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[9] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[10] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[13] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
阅读次数
全文


摘要