1 |
Richardson B, Kahn L, Lovett EJ, et al. Effect of an inhibitor of DNA methylation on T cells. I. 5-Azacytidine induces T4 expression on T8+ T cells [J]. J Immunol, 1986, 137(1):35-39.
|
2 |
Quddus J, Johnson KJ, Gavalchin J, et al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice [J]. J Clin Invest, 1993, 92(1):38-53.
|
3 |
Burch HB, Cooper DS. Management of graves disease: a Review [J]. JAMA, 2015, 314(23):2544-2554.
|
4 |
Muscogiuri G, Mari D, Prolo S, et al. 25 hydroxyvitamin D deficiency and its relationship to autoimmune thyroid disease in the elderly [J]. Int J Environ Res Public Health, 2016, 13(9). pii:E850.
|
5 |
Camargo RY, Tomimori EK, Neves SC, et al. Thyroid and the environment: exposure to excessive nutritional iodine increases the prevalence of thyroid disorders in Sao Paulo, Brazil [J]. Eur J Endocrinol, 2008, 159(3):293-299.
|
6 |
Martin-Subero JI. How epigenomics brings phenotype into being [J]. Pediatr Endocrinol Rev, 2011, 9 Suppl 1:506-510.
|
7 |
Wei JW, Huang K, Yang C, et al. Non-coding RNAs as regulators in epigenetics (Review) [J]. Oncol Rep, 2017, 37(1):3-9.
|
8 |
郑慧娟,魏璠,魏军平. Graves病发病机制新进展 [J]. 中国免疫学杂志, 2017, 33(4):621-624.
|
9 |
Hanson MA, Gluckman PD. Developmental origins of health and disease: new insights [J]. Basic Clin Pharmacol Toxicol, 2008, 102(2):90-93.
|
10 |
Relton CL, Davey SG. Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment [J]. PLoS Med, 2010, 7(10):e1000356.
|
11 |
Siklenka K, Erkek S, Godmann M, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally [J]. Science, 2015, 350(6261):aab2006.
|
12 |
Zenk F, Loeser E, Schiavo R, et al. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition [J]. Science, 2017, 357(6347):212-216.
|
13 |
Barres R, Zierath JR. DNA methylation in metabolic disorders [J]. Am J Clin Nutr, 2011, 93(4):897S-900S.
|
14 |
Cai TT, Muhali FS, Song RH, et al. Genome-wide DNA methylation analysis in Graves′ disease [J]. Genomics, 2015, 105(4):204-210.
|
15 |
Limbach M, Saare M, Tserel L, et al. Epigenetic profiling in CD4+ and CD8+ T cells from Graves′ disease patients reveals changes in genes associated with T cell receptor signaling [J]. J Autoimmun, 2016, 67:46-56.
|
16 |
Liu T, Sun J, Wang Z, et al. Changes in the DNA methylation and hydroxymethylation status of the intercellular adhesion molecule 1 gene promoter in thyrocytes from autoimmune thyroiditis patients [J]. Thyroid, 2017, 27(6):838-845.
|
17 |
Sabari BR, Zhang D, Allis CD, et al. Metabolic regulation of gene expression through histone acylations [J]. Nat Rev Mol Cell Biol, 2017, 18(2):90-101.
|
18 |
Berger SL. The complex language of chromatin regulation during transcription [J]. Nature, 2007, 447(7143):407-412.
|
19 |
Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression [J]. Trends Genet, 2016, 32(1):42-56.
|
20 |
Yan N, Zhou JZ, Zhang JA, et al. Histone hypoacetylation and increased histone deacetylases in peripheral blood mononuclear cells from patients with Graves′ disease [J]. Mol Cell Endocrinol, 2015, 414:143-147.
|
21 |
Stefan M, Jacobson EM, Huber AK, et al. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism [J]. J Biol Chem, 2011, 286(36):31168-31179.
|
22 |
Chen JQ, Papp G, Szodoray P, et al. The role of microRNAs in the pathogenesis of autoimmune diseases [J]. Autoimmun Rev, 2016, 15(12):1171-1180.
|
23 |
Li J, Cai Y, Sun X, et al. MiR-346 and TRAb as predicative factors for relapse in Graves′ disease within one year [J]. Horm Metab Res, 2017, 49(3):180-184.
|
24 |
Liu R, Ma X, Xu L, et al. Differential microRNA expression in peripheral blood mononuclear cells from Graves′ disease patients [J]. J Clin Endocrinol Metab, 2012, 97(6):E968-E972.
|
25 |
Bernecker C, Lenz L, Ostapczuk MS, et al. MicroRNAs miR-146a1, miR-155_2, and miR-200a1 are regulated in autoimmune thyroid diseases [J]. Thyroid, 2012, 22(12):1294-1295.
|
26 |
Bernecker C, Halim F, Lenz L, et al. microRNA expressions in CD4+ and CD8+ T-cell subsets in autoimmune thyroid diseases [J]. Exp Clin Endocrinol Diabetes, 2014, 122(2):107-112.
|
27 |
Wapinski O, Chang HY. Long noncoding RNAs and human disease [J]. Trends Cell Biol, 2011, 21(6):354-361.
|
28 |
Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements [J]. Nature, 2011, 470(7333):284-288.
|
29 |
Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA [J]. Nat Genet, 2002, 30(2):167-174.
|
30 |
Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes [J]. Science, 2010, 329(5992):689-693.
|
31 |
Clemson CM, Hutchinson JN, Sara SA, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles [J]. Mol Cell, 2009, 33(6):717-726.
|
32 |
Christensen NJ, Habekost G, Bratholm P. A RNA transcript (Heg) in mononuclear cells is negatively correlated with CD14 mRNA and TSH receptor autoantibodies [J]. Clin Exp Immunol, 2008, 154(2):209-215.
|
33 |
Christensen NJ, Habekost G, Bratholm P. Decrease in TSH receptor autoantibodies during antithyroid treatment: relationship with a long noncoding heg RNA and cdk1 mRNA in mononuclear cells [J]. ISRN Endocrinol, 2011, 2011:287052.
|
34 |
Zhao SX, Xue LQ, Liu W, et al. Robust evidence for five new Graves′ disease risk loci from a staged genome-wide association analysis [J]. Hum Mol Genet, 2013, 22(16):3347-3362.
|
35 |
Cang S, Lu Q, Ma Y, et al. Clinical advances in hypomethylating agents targeting epigenetic pathways [J]. Curr Cancer Drug Targets, 2010, 10(5):539-545.
|