切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 302 -305. doi: 10.3877/cma.j.issn.1674-0785.2018.05.009

所属专题: 文献

综述

Graves病表观遗传学的进展
阿地拉·阿里木1, 郭艳英1, 王新玲1,()   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院内分泌科
  • 收稿日期:2017-11-15 出版日期:2018-03-01
  • 通信作者: 王新玲
  • 基金资助:
    国家自然基金地区项目(81560136)

Epigenetics of Graves disease

Alimu Adila1, Yanying Guo1, Xinling Wang1,()   

  1. 1. Department of Endocrinology, People′s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
  • Received:2017-11-15 Published:2018-03-01
  • Corresponding author: Xinling Wang
  • About author:
    Corresponding author: Wang Xinling, Email:
引用本文:

阿地拉·阿里木, 郭艳英, 王新玲. Graves病表观遗传学的进展[J]. 中华临床医师杂志(电子版), 2018, 12(05): 302-305.

Alimu Adila, Yanying Guo, Xinling Wang. Epigenetics of Graves disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(05): 302-305.

Graves病(GD)又称毒性弥漫性甲状腺肿,是引起甲状腺功能亢进最常见的原因。最近研究表明遗传易感性和环境诱发因素的相互作用被认为是导致GD发病的关键原因;而表观遗传学是环境与遗传之间的桥梁,越来越多的证据表明表观遗传修饰,包括DNA甲基化、组蛋白共价修饰以及由非编码的RNA分子介导的基因沉默,在GD的发病机制中扮演着重要的角色。本文主要阐述表观遗传学参与GD发病的机制以及相关的临床潜在应用。

Graves disease (GD), also known as toxic diffuse goiter, is the most common cause of hyperthyroidism. Recent studies have shown that the interaction between genetic susceptibility and environmental predisposing factors is possibly the key cause of GD, and epigenetics is a bridge between the environment and genetics. Evidence indicates that epigenetic changes including DNA methylation, histone covalent modification, and gene silencing mediated by non-coding RNA molecules play an important role in the pathogenesis of GD. This article mainly describes the epigenetics involved in the pathogenesis of GD and its potential clinical applications.

1
Richardson B, Kahn L, Lovett EJ, et al. Effect of an inhibitor of DNA methylation on T cells. I. 5-Azacytidine induces T4 expression on T8 T cells [J]. J Immunol, 1986, 137(1):35-39.
2
Quddus J, Johnson KJ, Gavalchin J, et al. Treating activated CD4 T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice [J]. J Clin Invest, 1993, 92(1):38-53.
3
Burch HB, Cooper DS. Management of graves disease: a Review [J]. JAMA, 2015, 314(23):2544-2554.
4
Muscogiuri G, Mari D, Prolo S, et al. 25 hydroxyvitamin D deficiency and its relationship to autoimmune thyroid disease in the elderly [J]. Int J Environ Res Public Health, 2016, 13(9). pii:E850.
5
Camargo RY, Tomimori EK, Neves SC, et al. Thyroid and the environment: exposure to excessive nutritional iodine increases the prevalence of thyroid disorders in Sao Paulo, Brazil [J]. Eur J Endocrinol, 2008, 159(3):293-299.
6
Martin-Subero JI. How epigenomics brings phenotype into being [J]. Pediatr Endocrinol Rev, 2011, 9 Suppl 1:506-510.
7
Wei JW, Huang K, Yang C, et al. Non-coding RNAs as regulators in epigenetics (Review) [J]. Oncol Rep, 2017, 37(1):3-9.
8
郑慧娟,魏璠,魏军平. Graves病发病机制新进展 [J]. 中国免疫学杂志, 2017, 33(4):621-624.
9
Hanson MA, Gluckman PD. Developmental origins of health and disease: new insights [J]. Basic Clin Pharmacol Toxicol, 2008, 102(2):90-93.
10
Relton CL, Davey SG. Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment [J]. PLoS Med, 2010, 7(10):e1000356.
11
Siklenka K, Erkek S, Godmann M, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally [J]. Science, 2015, 350(6261):aab2006.
12
Zenk F, Loeser E, Schiavo R, et al. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition [J]. Science, 2017, 357(6347):212-216.
13
Barres R, Zierath JR. DNA methylation in metabolic disorders [J]. Am J Clin Nutr, 2011, 93(4):897S-900S.
14
Cai TT, Muhali FS, Song RH, et al. Genome-wide DNA methylation analysis in Graves′ disease [J]. Genomics, 2015, 105(4):204-210.
15
Limbach M, Saare M, Tserel L, et al. Epigenetic profiling in CD4 and CD8 T cells from Graves′ disease patients reveals changes in genes associated with T cell receptor signaling [J]. J Autoimmun, 2016, 67:46-56.
16
Liu T, Sun J, Wang Z, et al. Changes in the DNA methylation and hydroxymethylation status of the intercellular adhesion molecule 1 gene promoter in thyrocytes from autoimmune thyroiditis patients [J]. Thyroid, 2017, 27(6):838-845.
17
Sabari BR, Zhang D, Allis CD, et al. Metabolic regulation of gene expression through histone acylations [J]. Nat Rev Mol Cell Biol, 2017, 18(2):90-101.
18
Berger SL. The complex language of chromatin regulation during transcription [J]. Nature, 2007, 447(7143):407-412.
19
Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression [J]. Trends Genet, 2016, 32(1):42-56.
20
Yan N, Zhou JZ, Zhang JA, et al. Histone hypoacetylation and increased histone deacetylases in peripheral blood mononuclear cells from patients with Graves′ disease [J]. Mol Cell Endocrinol, 2015, 414:143-147.
21
Stefan M, Jacobson EM, Huber AK, et al. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism [J]. J Biol Chem, 2011, 286(36):31168-31179.
22
Chen JQ, Papp G, Szodoray P, et al. The role of microRNAs in the pathogenesis of autoimmune diseases [J]. Autoimmun Rev, 2016, 15(12):1171-1180.
23
Li J, Cai Y, Sun X, et al. MiR-346 and TRAb as predicative factors for relapse in Graves′ disease within one year [J]. Horm Metab Res, 2017, 49(3):180-184.
24
Liu R, Ma X, Xu L, et al. Differential microRNA expression in peripheral blood mononuclear cells from Graves′ disease patients [J]. J Clin Endocrinol Metab, 2012, 97(6):E968-E972.
25
Bernecker C, Lenz L, Ostapczuk MS, et al. MicroRNAs miR-146a1, miR-155_2, and miR-200a1 are regulated in autoimmune thyroid diseases [J]. Thyroid, 2012, 22(12):1294-1295.
26
Bernecker C, Halim F, Lenz L, et al. microRNA expressions in CD4 and CD8 T-cell subsets in autoimmune thyroid diseases [J]. Exp Clin Endocrinol Diabetes, 2014, 122(2):107-112.
27
Wapinski O, Chang HY. Long noncoding RNAs and human disease [J]. Trends Cell Biol, 2011, 21(6):354-361.
28
Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements [J]. Nature, 2011, 470(7333):284-288.
29
Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA [J]. Nat Genet, 2002, 30(2):167-174.
30
Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes [J]. Science, 2010, 329(5992):689-693.
31
Clemson CM, Hutchinson JN, Sara SA, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles [J]. Mol Cell, 2009, 33(6):717-726.
32
Christensen NJ, Habekost G, Bratholm P. A RNA transcript (Heg) in mononuclear cells is negatively correlated with CD14 mRNA and TSH receptor autoantibodies [J]. Clin Exp Immunol, 2008, 154(2):209-215.
33
Christensen NJ, Habekost G, Bratholm P. Decrease in TSH receptor autoantibodies during antithyroid treatment: relationship with a long noncoding heg RNA and cdk1 mRNA in mononuclear cells [J]. ISRN Endocrinol, 2011, 2011:287052.
34
Zhao SX, Xue LQ, Liu W, et al. Robust evidence for five new Graves′ disease risk loci from a staged genome-wide association analysis [J]. Hum Mol Genet, 2013, 22(16):3347-3362.
35
Cang S, Lu Q, Ma Y, et al. Clinical advances in hypomethylating agents targeting epigenetic pathways [J]. Curr Cancer Drug Targets, 2010, 10(5):539-545.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[3] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[4] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[5] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[6] 钱小卫, 丁海兵, 游继军, 王熠, 卞小霞. 微小miR水平联合检测在非小细胞肺癌转移中的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 47-50.
[7] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[8] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[9] 张瑞琪, 张丽娟, 孙斌. 甲状腺相关性眼病表观遗传学的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 226-230.
[10] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[11] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[12] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[13] 高利超, 吕强, 王玉洁, 张冬梅, 丁文飞, 曹灵, 欧三桃. 联合检测外周血miRNA-21和miRNA-192对慢性肾小球肾炎早期肾功能损害的预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(09): 887-891.
[14] 神童, 申程, 甘立军. 囊泡在冠状动脉钙化过程中的作用[J]. 中华诊断学电子杂志, 2023, 11(01): 1-4.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要