切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 65 -71. doi: 10.3877/cma.j.issn.1674-0785.2021.01.013

所属专题: 文献

综述

12/15-LOX在心肌缺血再灌注损伤中作用的研究进展
吴春宇1, 潘闽1, 张清泉1, 姜荣2,()   
  1. 1. 226001 江苏南通,南通大学附属医院心内科
    2. 226001 江苏南通,南通大学附属医院儿科
  • 收稿日期:2020-08-04 出版日期:2021-01-15
  • 通信作者: 姜荣

Advances in the role of 12/15-LOX in myocardial ischemia- reperfusion injury

Chunyu Wu1, Min Pan1, Qingquan Zhang1   

  1. 1. Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
    2. Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong 226001, China
  • Received:2020-08-04 Published:2021-01-15
引用本文:

吴春宇, 潘闽, 张清泉, 姜荣. 12/15-LOX在心肌缺血再灌注损伤中作用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(01): 65-71.

Chunyu Wu, Min Pan, Qingquan Zhang. Advances in the role of 12/15-LOX in myocardial ischemia- reperfusion injury[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(01): 65-71.

12/15-脂氧合酶(12/15-LOX)为脂氧合酶家族成员,可参与催化各种脂肪酸氧化,产生的多种脂质成分在生物学中意义重大。同时12/15-LOX在各种免疫性、炎性疾病的病理生理过程中起了很重要的作用。12/15-LOX及其相关产物,广泛分布在组织中,在糖尿病、肝脏、心脑血管等疾病过程中发挥重要作用。心肌缺血再灌注损伤是严重心肌损伤的一种,炎症反应、氧化应激、细胞凋亡等多种机制参与了其发生,本文对12/15-LOX在心肌缺血再灌注损伤中的作用做一综述。

12/15-lipoxygenase (12/15-lipoxygenase, 12/15-LOX) is a member of the lipoxygenase (LOXs, lipoxygenases) family. It can be involved in catalyzing the oxidation of various fatty acids to produce a variety of lipid components, which is of great significance in biology. At the same time, 12/15-LOX plays an important role in the pathophysiological process of various immune and inflammatory diseases. 12/15-LOX and its related products are widely distributed in tissues and play an important role in the process of diabetes, liver, cardiovascular and cerebrovascular diseases. Myocardial ischemia-reperfusion injury is a kind of severe myocardial injury, in which inflammatory reaction, oxidative stress, apoptosis and other mechanisms are involved. In this paper, the role of 12/15-LOX in myocardial ischemia-reperfusion injury is reviewed.

1
Anderson JL, Morrow DA. Acute myocardial infarction [J]. N Engl J Med, 2017, 376(21): 2053-2064.
2
Armstrong SC. Protein kinase activation and myocardial ischemia/reperfusion injury [J]. Cardiovasc Res, 2004, 61(3): 427-436.
3
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要 [J]. 中国循环杂志, 2019, 34(3): 209-220.
4
Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction [J]. J Am Coll Cardiol, 2000, 36(4): 1202-1209.
5
Guadall A, Orriols M, Alcudia JF, et al. Hypoxia-induced ROS signaling is required for LOX up-regulation in endothelial cells [J]. Front Biosci (Elite Ed), 2011, 3: 955-967.
6
Van Leyen K, Kim HY, Lee SR, et al. Baicalein and 12/15-lipoxygenase in the ischemic brain [J]. Stroke, 2006, 37(12): 3014-3018.
7
Kain V, Ingle KA, Kabarowski J, et al. Genetic deletion of 12/15 lipoxygenase promotes effective resolution of inflammation following myocardial infarction [J]. J Mol Cell Cardiol, 2018, 118: 70-80.
8
Song L, Yang H, Wang HX, et al. Inhibition of 12/15 lipoxygenase by baicalein reduces myocardialischemia/reperfusioninjury via modulation of multiple signaling pathways [J]. Apoptosis, 2014, 19(4):567-580.
9
Funk CD, Chen XS, Johnson EN, et al. Lipoxygenase genes and their targeted disruption [J]. Prostaglandins Other Lipid Mediat, 2002, 68-69: 303-312.
10
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15) [J]. Gene, 2015, 573(1): 1-32.
11
谭震, 厉小梅. 12/15-脂氧合酶对骨质疏松的影响 [J]. 中华骨质疏松和骨矿盐疾病杂志, 2013, 6(3): 89-92.
12
Kayama Y, Minamino T, Toko H, et al. Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure [J]. J Exp Med, 2009, 206(7):1565-1574.
13
Reilly KB, Srinivasan S, Hatley ME, et al. 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo [J]. J Biol Chem, 2004, 279(10): 9440-9450.
14
Suzuki H, Kayama Y, Sakamoto M, et al. Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress areinvolved in the development of diabetic cardiomyopathy [J]. Diabetes, 2015, 64(2): 618-630.
15
Zhao L, Funk CD. Lipoxygenase pathways in atherogenesis [J]. Trends Cardiovasc Med, 2004, 14(5): 191-195.
16
Sears DD, Miles PD, Chapman J, et al. 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice [J]. PLoS One, 2009, 4(9): e7250.
17
Wen Y, Gu J, Chakrabarti SK, et al. The role of 12/15-lipoxygenase in the expression of interleukin-6 and tumor necrosis factor-alpha in macrophages [J]. Endocrinology, 2007, 148(3): 1313-1322.
18
Zhao L, Cuff CA, Moss E, et al. Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia [J]. J Biol Chem, 2002, 277(38): 35350-35356.
19
Chan MM, Moore AR. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production [J]. J Immunol, 2010, 184(11): 6418-6426.
20
Lindley AR, Crapster-Pregont M, Liu Y, et al. 12/15-lipoxygenase is an interleukin-13 and interferon-γ counterregulated-mediator of allergic airway inflammation [J]. Mediators Inflamm, 2010, 2010: 727305.
21
Kalogeris T, Baines CP, Krenz M, et al. Ischemia/reperfusion [J]. Compr Physiol, 2016, 7(1): 113-170.
22
Han J, Sun L, Xu Y, et al. Activation of PPARγ by 12/15-lipoxygenase during cerebral ischemia-reperfusion injury [J]. Int J Mol Med, 2015, 35(1): 195-201.
23
Czapski GA, Czubowicz K, Strosznajder RP. Evaluation of the antioxidative properties of lipoxygenase inhibitors [J]. Pharmacol Rep, 2012, 64(5): 1179-1188.
24
Praticò D, Zhukareva V, Yao Y, et al. 12/15-lipoxygenase is increased in Alzheimer's disease: possible involvement in brain oxidative stress [J]. Am J Pathol, 2004, 164(5): 1655-1662.
25
Anning PB, Coles B, Bermudez-Fajardo A, et al. Elevated endothelial nitric oxide bioactivity and resistance to angiotensin-dependent hypertension in 12/15-lipoxygenase knockout mice [J]. Am J Pathol, 2005, 166(3): 653-662.
26
DelliPizzi A, Guan H, Tong X, et al. Lipoxygenase-dependent mechanisms in hypertension [J]. Clin Exp Hypertens, 2000, 22(2): 181-192.
27
Li Q, Li QQ, Jia JN, et al. Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis [J]. Front Pharmacol, 2019, 10: 638.
28
Del Re DP, Amgalan D, Linkermann A, et al. Fundamental mechanisms of regulated cell death and implications for heart disease [J]. Physiol Rev, 2019, 99(4): 1765-1817.
29
Sakamoto M, Minamino T, Toko H, et al. Upregulation of heat shock transcription factor 1 plays a critical role in adaptive cardiac hypertrophy [J]. Circ Res, 2006, 99(12): 1411-1418.
30
Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload [J]. Nature, 2007, 446(7134): 444-448.
31
Toko H, Takahashi H, Kayama Y, et al. Ca2+/calmodulin-dependent kinase IIdelta causes heart failure by accumulation of p53 in dilated cardiomyopathy [J]. Circulation, 2010, 122(9): 891-899.
32
Natarajan R, Yang DC, Lanting L, et al. Key role of P38 mitogen-activated protein kinase and the lipoxygenase pathway in angiotensin II actions in H295R adrenocortical cells [J]. Endocrine, 2002, 18(3): 295-301.
33
Natarajan R, Nadler JL. Lipid inflammatory mediators in diabetic vascular disease [J]. Arterioscler Thromb Vasc Biol, 2004, 24(9): 1542-1548.
34
Taylor AM, Hanchett R, Natarajan R, et al. The effects of leukocyte-type 12/15-lipoxygenase on Id3-mediated vascular smooth muscle cell growth [J]. Arterioscler Thromb Vasc Biol, 2005, 25(10): 2069-2074.
35
Zhang Y, Wang Y, Xu J, et al. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways [J]. J Pineal Res, 2019, 66(2): e12542.
36
Dioszeghy V, Rosas M, Maskrey BH, et al. 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo [J]. J Immunol, 2008, 181(9): 6514-6524.
37
Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells [J]. Nat Rev Immunol, 2010, 10(5): 365-376.
38
Zhao T, Wang D, Cheranov SY, et al. A novel role for activating transcription factor-2 in 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis [J]. J Lipid Res, 2009, 50(3): 521-533.
39
Wen Y, Gu J, Vandenhoff GE, et al. Role of 12/15-lipoxygenase in the expression of MCP-1 in mouse macrophages [J]. Am J Physiol Heart Circ Physiol, 2008, 294(4): H1933-H1938.
40
Reddy MA, Sahar S, Villeneuve LM, et al. Role of Src tyrosine kinase in the atherogenic effects ofthe 12/15-lipoxygenase pathway in vascular smooth muscle cells [J]. Arterioscler Thromb Vasc Biol, 2009, 29(3): 387-393.
41
Halade GV, Kain V, Ingle KA, et al. Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing [J]. Am J Physiol Heart Circ Physiol, 2017, 313(1): H89-H102.
42
Wang AW, Song L, Miao J, et al. Baicalein attenuates angiotensin II-induced cardiac remodeling viainhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice [J]. Am J Hypertens, 2015, 28(4): 518-526.
43
Rajesh M, Mukhopadhyay P, Bátkai S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy [J]. J Am Coll Cardiol, 2010, 56(25): 2115-2125.
44
Teshima Y, Takahashi N, Nishio S, et al. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase [J]. Circ J, 2014, 78(2): 300-306.
45
Bugger H, Boudina S, Hu XX, et al. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3 [J]. Diabetes, 2008, 57(11): 2924-2932.
46
Gorin Y, Block K. Nox as a target for diabetic complications [J]. Clin Sci (Lond), 2013, 125(8): 361-382.
47
Dikalov S. Cross talk between mitochondria and NADPH oxidases [J]. Free Radic Biol Med, 2011, 51(7): 1289-1301.
48
Lee SB, Bae IH, Bae YS, et al. Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death [J]. J Biol Chem, 2006, 281(47): 36228-36235.
49
Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes [J]. Circ Res, 2000, 87(12): 1123-1132.
50
Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women [J]. Circulation, 2004, 109(18): 2191-2196.
51
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell, 2012, 149(5): 1060-1072.
52
Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis [J]. Mol Cell, 2015, 59(2): 298-308.
53
Baba Y, Higa JK, Shimada BK, et al. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes [J]. Am J Physiol Heart Circ Physiol, 2018, 314(3): H659-H668.
54
李佳, 邓胜利. 内质网应激在心脏的作用 [J]. 辽宁医学杂志, 2015, 29(6): 321-323.
55
Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy [J]. Proc Natl Acad Sci U S A, 2019, 116(7): 2672-2680.
56
Conrad M, Angeli JP, Vandenabeele P, et al. Regulated necrosis: disease relevance and therapeutic opportunities [J]. Nat Rev Drug Discov, 2016, 15(5): 348-366.
57
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4 [J]. Cell, 2014, 156(1-2): 317-331.
58
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition [J]. Nat Chem Biol, 2017, 13(1): 91-98.
59
Probst L, Dächert J, Schenk B, et al. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death [J]. Biochem Pharmacol, 2017, 140: 41-52.
60
Seiler A, Schneider M, Förster H, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death [J]. Cell Metab, 2008, 8(3): 237-248.
61
Loscalzo J. Membrane redox state and apoptosis: death by peroxide [J]. Cell Metab, 2008, 8(3): 182-183.
62
Drefs M, Thomas MN, Guba M, et al. Modulation of glutathione hemostasis by inhibition of 12/15-lipoxygenase prevents ROS-mediated cell death after hepatic ischemia and reperfusion [J]. Oxid Med Cell Longev, 2017, 2017: 8325754.
63
Park TJ, Park JH, Lee GS, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes [J]. Cell Death Dis, 2019, 10(11): 835.
[1] 齐疏影, 李响, 刘飞. 血糖间隙对非糖尿病急性ST段抬高型心肌梗死患者发生心肌缺血再灌注损伤的预测价值[J]. 中华危重症医学杂志(电子版), 2021, 14(06): 448-452.
[2] 刘思嘉, 张喜玲, 黄翠君, 刘云建. 铁死亡在常见肝脏疾病中的研究进展[J]. 中华普通外科学文献(电子版), 2022, 16(03): 231-235.
[3] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[4] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[5] 王滔, 王梦舟, 张佳, 吕毅, 吴荣谦. 铁死亡在肝细胞癌治疗中的作用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 215-217.
[6] 刘成飞, 徐少强, 姚添, 黄河. 谷胱甘肽在结直肠癌增殖转移及诊疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2022, 11(06): 506-510.
[7] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[8] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[9] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[10] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[11] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[12] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[13] 谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.
[14] 李民昌, 马长林. 自噬调控的细胞铁死亡及在肿瘤中影响的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 140-144.
[15] 刘倩, 李鑫, 刘欣, 苑金香. 铁死亡在阿尔茨海默病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 211-215.
阅读次数
全文


摘要