切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (07) : 671 -676. doi: 10.3877/cma.j.issn.1674-0785.2024.07.009

综述

孟德尔随机化及其在乳腺癌研究中的应用进展
王帅1, 张志远1, 苏雨晴1, 李雯雯1, 王守凯1, 刘琦1, 李文涛2,()   
  1. 1.450003 郑州,郑州大学人民医院乳腺外科
    2.450003 郑州,河南省人民医院乳腺外科
  • 收稿日期:2024-05-12 出版日期:2024-07-15
  • 通信作者: 李文涛
  • 基金资助:
    河南省乳腺癌精准防治工程研究中心(ZC20220050)河南省人民医院-23456 人才工程项目(ZC23456026)

Mendelian randomization and its application in breast cancer research

Shuai Wang1, Zhiyuan Zhang1, Yuqing Su1, Wenwen Li1, Shoukai Wang1, Qi Liu1, Wentao Li2,()   

  1. 1.Department of Breast Surgery, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
    2.Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou 450003, China
  • Received:2024-05-12 Published:2024-07-15
  • Corresponding author: Wentao Li
引用本文:

王帅, 张志远, 苏雨晴, 李雯雯, 王守凯, 刘琦, 李文涛. 孟德尔随机化及其在乳腺癌研究中的应用进展[J]. 中华临床医师杂志(电子版), 2024, 18(07): 671-676.

Shuai Wang, Zhiyuan Zhang, Yuqing Su, Wenwen Li, Shoukai Wang, Qi Liu, Wentao Li. Mendelian randomization and its application in breast cancer research[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(07): 671-676.

孟德尔随机化是一种以遗传变异作为工具变量的因果推断法,利用遗传变异的分配随机性,达到类似随机对照试验的效果,可以克服传统观察性研究中的混杂偏倚,凭借遗传变异的时序优先性,还可以克服传统观察性研究中的反向因果干扰,因而近年来被广泛用于医学领域中的因果推断。本文围绕该方法及其在乳腺癌研究领域中的应用进行综述,旨在为乳腺癌的因果关联研究提供新思路,以及为乳腺癌的防治提供依据。

Mendelian randomization is a causal inference method using genetic variants as instrumental variables, which utilizes the assignment randomness of genetic variants to achieve the effect similar to that of a randomized controlled trial, and can overcome the confounding bias in traditional observational studies. By virtue of the temporal precedence of the genetic variants, Mendelian randomization can also overcome the reverse causality interference in traditional observational studies. Mendelian randomization has been widely used in recent years for causal inference in the medical field. In this paper,we will review the Mendelian randomization method and its application in the field of breast cancer research,aiming to provide new ideas for the causal association study of breast cancer, as well as to provide a basis for the prevention and treatment of this malignancy.

1
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.
2
李越, 周祺祺, 赵洪猛. 初诊Ⅳ期乳腺癌的外科治疗进展 [J/OL].中华临床医师杂志(电子版), 2023, 17(10): 1097-1101.
3
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019 [J]. CA Cancer J Clin, 2019, 69(5):363-85.
4
Terry MB, Colditz GA. Epidemiology and risk factors for breast cancer: 21st century advances, gaps to address through interdisciplinary science [J]. Cold Spring Harb Perspect Med, 2023,13(9): a041317.
5
Smith GD, Ebrahim S. Data dredging, bias, or confounding [J]. Bmj,2002, 325(7378): 1437-1438.
6
Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer[J]. Lancet, 1986, 1(8479): 507-508.
7
Thomas DC, Conti DV. Commentary: the concept of ‘Mendelian Randomization’ [J]. Int J Epidemiol, 2004, 33(1): 21-25.
8
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The STROBE-MR Statement [J]. Jama, 2021, 326(16):1614-1621.
9
Hingorani A, Humphries S. Nature’s randomised trials [J]. Lancet,2005, 366(9501): 1906-1908.
10
Sekula P, Del Greco MF, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data [J]. J Am Soc Nephrol, 2016, 27(11): 3253-3265.
11
王莉娜, Zuofeng Z. 孟德尔随机化法在因果推断中的应用 [J]. 中华流行病学杂志, 2017, 38(4): 547-552.
12
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization [J].JAMA, 2017, 318(19): 1925-1926.
13
Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies [J]. Int J Epidemiol, 2011, 40(3):755-764.
14
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data [J].Genet Epidemiol, 2013, 37(7): 658-665.
15
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method [J]. Eur J Epidemiol, 2017,32(5): 377-389.
16
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator [J]. Genet Epidemiol, 2016, 40(4): 304-314.
17
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases [J]. Nat Genet,2018, 50(5): 693-698.
18
Greco MF, Minelli C, Sheehan NA, et al. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome [J]. Stat Med, 2015, 34(21): 2926-2940.
19
Pierce SE, Booms A, Prahl J, et al. Post-GWAS knowledge gap: the how, where, and when [J]. NPJ Parkinsons Dis, 2020, 6: 23.
20
王玉琢, 沈洪兵. 孟德尔随机化研究应用于因果推断的影响因素及其结果解读面临的挑战 [J]. 中华流行病学杂志, 2020, 41(8): 1231-1236.
21
Key T, Appleby P, Barnes I, et al. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies [J]. J Natl Cancer Inst, 2002, 94(8): 606-616.
22
Key TJ, Appleby PN, Reeves GK, et al. Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies [J]. Lancet Oncol, 2013, 14(10): 1009-1019.
23
Bhaskaran K, Douglas I, Forbes H, et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults [J]. Lancet, 2014, 384(9945): 755-765.
24
Mccormack VA, Dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis [J]. Cancer Epidemiol Biomarkers Prev, 2006, 15(6): 1159-1169.
25
Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer [J]. N Engl J Med, 2007, 356(3): 227-236.
26
Nounu A, Kar SP, Relton CL, et al. Sex steroid hormones and risk of breast cancer: a two-sample Mendelian randomization study [J]. Breast Cancer Res, 2022, 24(1): 66.
27
Larsson SC, Kar S, Perry JRB, et al. Serum Estradiol and 20 Site-Specific Cancers in Women: Mendelian Randomization Study [J]. J Clin Endocrinol Metab, 2022, 107(2): e467-e474.
28
Ke B, Li C, Shang H. Sex hormones in the risk of breast cancer: a twosample Mendelian randomization study [J]. Am J Cancer Res, 2023,13(3): 1128-1136.
29
Schoemaker MJ, Nichols HB, Wright LB, et al. Association of Body Mass Index and Age With Subsequent Breast Cancer Risk in Premenopausal Women [J]. JAMA Oncol, 2018, 4(11): e181771.
30
Ooi BNS, Loh H, Ho PJ, et al. The genetic interplay between body mass index, breast size and breast cancer risk: a Mendelian randomization analysis [J]. Int J Epidemiol, 2019, 48(3): 781-794.
31
Guo Y, Warren Andersen S, Shu XO, et al. Genetically predicted body mass index and breast cancer risk: mendelian randomization analyses of data from 145,000 women of European descent [J]. PLoS Med,2016, 13(8): e1002105.
32
Gao C, Patel CJ, Michailidou K, et al. Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer [J]. Int J Epidemiol, 2016, 45(3): 896-908.
33
Shu X, Wu L, Khankari NK, et al. Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis [J]. Int J Epidemiol, 2019, 48(3): 795-806.
34
Fang X, Wang X, Song Z, et al. Causal association of childhood obesity with cancer risk in adulthood: A Mendelian randomization study [J]. Int J Cancer, 2021, 149(7): 1421-1425.
35
Hao Y, Xiao J, Liang Y, et al. Reassessing the causal role of obesity in breast cancer susceptibility: a comprehensive multivariable Mendelian randomization investigating the distribution and timing of exposure [J].Int J Epidemiol, 2023, 52(1): 58-70.
36
Pettersson A, Graff RE, Ursin G, et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis [J]. J Natl Cancer Inst, 2014, 106(5): dju078.
37
Sieh W, Rothstein JH, Klein R J, et al. Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk [J]. Nat Commun, 2020, 11(1): 5116.
38
Key TJ, Bradbury KE, Perez-cornago A, et al. Diet, nutrition, and cancer risk: what do we know and what is the way forward? [J]. Bmj,2020, 368: m511.
39
Ellingjord-Dale M, Papadimitriou N, Katsoulis M, et al. Coffee consumption and risk of breast cancer: A Mendelian randomization study [J]. PLoS One, 2021, 16(1): e0236904.
40
Deng Y, Ge W, Xu H, et al. A Mendelian randomization study of the effect of tea intake on breast cancer [J]. Front Nutr, 2022, 9: 956969.
41
Wang X, Chen L, Cao R, et al. Associations of 10 dietary habits with breast cancer: a Mendelian randomization study [J]. Front Nutr, 2023,10: 1215220.
42
Jin C, Li R, Deng T, et al. Association between dried fruit intake and pan-cancers incidence risk: A two-sample Mendelian randomization study [J]. Front Nutr, 2022, 9: 899137.
43
Wu S, Ma X, Zhang X, et al. Relationship between oily fish intake and breast cancer based on estrogen receptor status: a Mendelian randomization study [J]. Breast Cancer Res Treat, 2024, 203(1): 145-152.
44
Dong H, Kong X, Wang X, et al. The causal effect of dietary composition on the risk of breast cancer: A mendelian randomization study [J]. Nutrients, 2023, 15(11): 2586.
45
Zhao H, Wu S, Liu H, et al. Relationship between food-derived antioxidant vitamin intake and breast cancer risk: a mendelian randomized study [J]. Eur J Nutr, 2023, 62(6): 2365-2373.
46
Zhong S, Zhang X, Chen L, et al. Statin use and mortality in cancer patients: Systematic review and meta-analysis of observational studies[J]. Cancer Treat Rev, 2015, 41(6): 554-567.
47
Nowak C, Ärnlöv J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk [J]. Nat Commun, 2018, 9(1): 3957.
48
Johnson KE, Siewert KM, Klarin D, et al. The relationship between circulating lipids and breast cancer risk: A Mendelian randomization study [J]. PLoS Med, 2020, 17(9): e1003302.
49
Beeghly-Fadiel A, Khankari NK, Delahanty RJ, et al. A Mendelian randomization analysis of circulating lipid traits and breast cancer risk[J]. Int J Epidemiol, 2020, 49(4): 1117-1131.
50
Wang Y, Liu F, Sun L, et al. Association between human blood metabolome and the risk of breast cancer [J]. Breast Cancer Res, 2023,25(1): 9.
51
Tang SN, Zuber V, Tsilidis KK. Identifying and ranking causal biochemical biomarkers for breast cancer: a Mendelian randomisation study [J]. BMC Med, 2022, 20(1): 457.
52
Zhou M, Henricks M, Loch V, et al. Mendelian randomization analysis revealed potential metabolic causal factors for breast cancer [J]. Sci Rep, 2023, 13(1): 14290.
53
Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier [J]. Gut, 2016, 65(2): 330-339.
54
Sommer F, Bäckhed F. The gut microbiota--masters of host development and physiology [J]. Nat Rev Microbiol, 2013, 11(4): 227-238.
55
Goedert JJ, Jones G, Hua X, et al. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study [J]. J Natl Cancer Inst, 2015, 107(8): djv147.
56
Zhang S, Zhang W, Ren H, et al. Mendelian randomization analysis revealed a gut microbiota-mammary axis in breast cancer [J]. Front Microbiol, 2023, 14: 1193725.
57
Joseph KR, Edirimanne S, Eslick GD. The association between breast cancer and thyroid cancer: a meta-analysis [J]. Breast Cancer Res Treat, 2015, 152(1): 173-181.
58
Nielsen SM, White MG, Hong S, et al. The breast-thyroid cancer link: A systematic review and meta-analysis [J]. Cancer Epidemiol Biomarkers Prev, 2016, 25(2): 231-238.
59
Muller I, Barrett-Lee PJ. The antigenic link between thyroid autoimmunity and breast cancer [J]. Semin Cancer Biol, 2020, 64:122-134.
60
Halada S, Casado-Medrano V, Baran JA, et al. Hormonal crosstalk between thyroid and breast cancer [J]. Endocrinology, 2022, 163(7):bqac075.
61
Piek MW, De Boer JP, Van Duijnhoven F, et al. The co-occurrence of both breast- and differentiated thyroid cancer: incidence, association and clinical implications for daily practice [J]. BMC Cancer, 2022,22(1): 1018.
62
Liu J, Liang L. The association between thyroid and breast cancers:a bidirectional mendelian randomization study [J]. Front Endocrinol(Lausanne), 2023, 14: 1185497.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 赵阳, 肖迎聪, 巨艳, 党晓智, 蔡林利, 薛文欣, 李洋, 肖瑶, 郭妤绮, 宋宏萍. 自动乳腺超声联合免疫组化早期预测乳腺癌新辅助化疗病理完全缓解的临床价值[J]. 中华医学超声杂志(电子版), 2024, 21(04): 361-369.
[3] 杨柳, 宋振川, 王新乐. 乳腺癌改良根治术联合背阔肌复位的临床疗效评估[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 269-273.
[4] 牛海刚, 郭文科. 三阴性乳腺癌组织中双特异性磷酸酶14与核受体相互作用蛋白1的表达及预后价值[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 199-205.
[5] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[6] 张钊, 骆成玉, 张树琦, 何平, 李旭斌. 不同术式治疗早期乳腺癌的效果及并发症发生率、复发率比较[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 494-497.
[7] 宋佳, 汪波, 孙凯律, 商江峰, 吴旦平, 肇毅. 吲哚菁绿荧光显影联合亚甲蓝染色在乳腺癌前哨淋巴结活检中的应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 498-501.
[8] 孙建娜, 孔令军, 任崇禧, 穆坤, 王晓蕊. 266例首诊Ⅳ期乳腺癌手术患者预后分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 502-505.
[9] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[10] 牛斌, 饶兰英, 刘晓晨, 何龙林, 秦培鑫. 基于孟德尔随机化分析胆囊切除与结直肠肛管恶性肿瘤发生的关系[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 313-318.
[11] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[12] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[13] 张梦婷, 穷拉姆, 色珍, 李逸群, 德庆旺姆. 西藏地区藏族乳腺癌新辅助化疗的真实世界研究[J]. 中华临床医师杂志(电子版), 2024, 18(05): 441-446.
[14] 黄宏山, 陈成彩. 经淋巴管超声造影在乳腺癌前哨淋巴结诊断中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(04): 411-414.
[15] 赵阳, 肖迎聪, 巨艳, 党晓智, 蔡林利, 薛文欣, 李洋, 肖瑶, 郭妤绮, 宋宏萍. 基于自动乳腺超声的列线图模型早期预测HER-2阳性乳腺癌新辅助化疗病理完全缓解的临床价值[J]. 中华临床医师杂志(电子版), 2024, 18(04): 355-362.
阅读次数
全文


摘要