切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2025, Vol. 19 ›› Issue (11) : 866 -870. doi: 10.3877/cma.j.issn.1674-0785.2025.11.011

综述

重复性经颅磁刺激与外泌体:抑郁症治疗研究的新视角
王兆彤1, 王美琴2, 陈磊1, 王莹莹1, 吴军1, 苑小历1,()   
  1. 1 210000 南京,中国人民解放军东部战区总医院精神心理科
    2 210000 南京,中国人民解放军东部战区总医院全科医学科
  • 收稿日期:2025-10-28 出版日期:2025-11-30
  • 通信作者: 苑小历

Repetitive transcranial magnetic stimulation and exosomes: a new perspective on depression treatment and research

Zhaotong Wang1, Meiqin Wang2, Lei Chen1, Yingying Wang1, Jun Wu1, Xiaoli Yuan1,()   

  1. 1 Department of Psychiatry, General Hospital of Eastern Theater Command of the People's Liberation Army of China, Nanjing 210000, China
    2 Department of General Practice, General Hospital of Eastern Theater Command of the People's Liberation Army of China, Nanjing 210000, China
  • Received:2025-10-28 Published:2025-11-30
  • Corresponding author: Xiaoli Yuan
引用本文:

王兆彤, 王美琴, 陈磊, 王莹莹, 吴军, 苑小历. 重复性经颅磁刺激与外泌体:抑郁症治疗研究的新视角[J/OL]. 中华临床医师杂志(电子版), 2025, 19(11): 866-870.

Zhaotong Wang, Meiqin Wang, Lei Chen, Yingying Wang, Jun Wu, Xiaoli Yuan. Repetitive transcranial magnetic stimulation and exosomes: a new perspective on depression treatment and research[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(11): 866-870.

抑郁症作为全球范围内致残的主要因素之一,其临床治疗长期面临着治疗药物应答率低和副作用显著等关键难题。在此背景下,重复性经颅磁刺激(rTMS)作为一种非侵入性的治疗技术,其核心原理是通过电磁脉冲调控大脑皮层神经元活动,避免了药物代谢带来的全身性影响从而在抑郁症治疗领域展现出其独特的优势。虽然现有研究系统评估了不同刺激参数的治疗方案,但是目前临床应用仍面临着机制解释不足、神经可塑性改变分子通路不明确等困境。外泌体作为一种至关重要的细胞间信息传递的信使,近年来多项研究均证实了其携带的特异性miRNA谱与突触重塑过程存在高度显著的关联,这种天然的信息传递系统可能为解释rTMS诱导的持续性神经改变提供帮助。本文通过综述rTMS治疗抑郁症的临床研究进展与外泌体在疾病中的作用,进而探讨二者相互作用的潜在机制,以期为抑郁症的治疗提供新的视角。

Depression disorder, as one of the main factors causing disability worldwide, has long been confronted with key challenges in clinical treatment, such as low response rates to therapeutic drugs and significant side effects. Against this backdrop, repetitive transcranial magnetic stimulation (rTMS), as a non-invasive treatment technique, has demonstrated unique advantages in the treatment of depression. At its core, rTMS utilizes electromagnetic pulses to regulate the activity of neurons in the cerebral cortex, avoiding the systemic effects brought by drug metabolism. Although existing research has systematically evaluated treatment regimens with different stimulation parameters, current clinical applications still face predicaments such as insufficient mechanism explanation and unclear molecular pathways underlying neural plasticity changes. Exosomes, as a crucial messenger for intercellular information transmission, have seen a highly significant association between the specific miRNA spectra that they carry and the synaptic remodeling process confirmed by multiple studies in recent years. This natural information transmission system may help explain the sustained neuroplastic changes induced by rTMS. This article reviews clinical advances in rTMS for depression treatment and the role of exosomes in the disease, and further explores the potential mechanism of their interaction, with the aim of providing a new perspective for the treatment of depression.

1
杨洋, 周俊, 王康恒. rTMS联合利培酮治疗阴性症状为主的老年精神分裂症的疗效及对患者认知功能和血清hs-CRP、Hcy水平的影响 [J]. 中国老年学杂志, 2023, 43(11): 2649-2652.
2
Chen L, Fukuda AM, Jiang S, et al. Treating depression with repetitive transcranial magnetic stimulation: A clinician's guide [J]. Am J Psychiatry, 2025, 182(6): 525-541.
3
Ferreira SA, Pinto N, Serrenho I, et al. Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation: a systematic review [J]. Neural Regen Res, 2024, 19(1): 116-123.
4
Sack A T, Paneva J, Küthe T, et al. Target engagement and brain state dependence of transcranial magnetic stimulation: implications for clinical practice [J]. Biol Psychiatry, 2024, 95(6): 536-544.
5
Prompiengchai S, Dunlop K. Breakthroughs and challenges for generating brain network-based biomarkers of treatment response in depression [J]. Neuropsychopharmacology, 2024, 50(1): 230-245.
6
Siddiqi SH, Schaper FLWV, Horn A, et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease [J]. Nat Hum Behav, 2021, 5(12): 1707-1716.
7
Daksh R, Sharma P, Khanna S, et al. Modulation of neuroplasticity and neuroinflammation by exosomal proteins and microRNA in depression: A review [J]. Int J Biol Macromol, 2025, 309(Pt 2): 142829.
8
Liu S, Chen L, Guo M, et al. Targeted delivery of engineered RVG-BDNF-exosomes: A novel neurobiological approach for ameliorating depression and regulating neurogenesis [J]. Research (Washington D C), 2024, 7: 402.
9
Yu Q, Ye S, Chen M, et al. A novel function for exosomes in depression [J]. Life Sci, 2025, 369: 123558.
10
Wang Y, Gao C, Gao T, et al. Plasma exosomes from depression ameliorate inflammation-induced depressive-like behaviors via sigma-1 receptor delivery [J]. Brain Behav Immun, 2021, 94: 225-234.
11
Papakostas GI, Trivedi MH, Shelton RC, et al. Comparative effectiveness research trial for antidepressant incomplete and non-responders with treatment resistant depression (ASCERTAIN-TRD) a randomized clinical trial [J]. Mol Psychiatry, 2024, 29(8): 2287-2295.
12
Wu T, Yu Q, Zhu X, et al. Embracing internal states: A review of optimization of repetitive transcranial magnetic stimulation for treating depression [J]. Neurosci Bull, 2025, 41(5): 866-880.
13
Xian X, Cai L, Li Y, et al. Neuron secrete exosomes containing miR-9-5p to promote polarization of M1 microglia in depression [J]. J Nanobiotechnology, 2022, 20(1): 122.
14
Jiang S, Carpenter LL, Jiang H. Optical neuroimaging: advancing transcranial magnetic stimulation treatments of psychiatric disorders [J]. Vis Comput Ind Biomed Art, 2022, 5(1): 22.
15
Dalhuisen I, van Bronswijk S, Bors J, et al. The association between sample and treatment characteristics and the efficacy of repetitive transcranial magnetic stimulation in depression: A meta-analysis and meta-regression of sham-controlled trials [J]. Biobehav Rev, 2022, 141: 104848.
16
Zhao Z, Ran X, Niu Y, et al. Predicting treatment response of repetitive transcranial magnetic stimulation in major depressive disorder using an explainable machine learning model based on electroencephalography and clinical features [J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2025, 10(6): 656-665.
17
Jin MX, Qin PP, Xia AWL, et al. Neurophysiological and neuroimaging markers of repetitive transcranial magnetic stimulation treatment response in major depressive disorder: A systematic review and meta-analysis of predictive modeling studies [J]. Neurosci Biobehav Rev, 2024, 162: 105695.
18
Han S, Li X, Wei S, et al. Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: A randomized double-blind trial and TMS-EEG study [J]. Cell Rep Med, 2023, 4(6): 101060.
19
Madsen CA, Navarro ML, Elfving B, et al. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood [J]. Eur Neuropsychopharmacol, 2024, 87: 35-55.
20
Fan C, Li Y, Lan T, et al. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression [J]. Mol Ther, 2022, 30(3): 1300-1314.
21
荣婧彤, 孙思琦, 刘忠纯. 外泌体在抑郁症中研究进展 [J]. 中国神经精神疾病杂志, 2023, 49(4): 247-250.
22
Jannati A, Oberman LM, Rotenberg A, et al. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation [J]. Neuropsychopharmacology, 2023, 48(1):191-208.
23
Zoicas I, Licht C, Mühle C, et al. Repetitive transcranial magnetic stimulation (rTMS) for depressive-like symptoms in rodent animal models [J]. Neurosci Biobehav Rev, 2024, 162: 105726.
24
Hu Y, Zhao M, Wang H, et al. Exosome-sheathed ROS-responsive nanogel to improve targeted therapy in perimenopausal depression [J]. J Nanobiotechnology, 2023, 21(1): 261.
25
Nie X, Liu Y, Yuan T, et al. Platelet-rich plasma-derived exosomes promote blood-spinal cord barrier repair and attenuate neuroinflammation after spinal cord injury [J]. J Nanobiotechnology, 2024, 22(1): 456.
26
Vasu SO, Kaphzan H. Calcium channels control tDCS-induced spontaneous vesicle release from axon terminals [J]. Brain Stimul, 2022, 15(1): 270-282.
27
Si Q, Wu L, Pang D, et al. Exosomes in brain diseases: Pathogenesis and therapeutic targets [J]. MedComm, 2023, 4(3): e287.
28
Cole J, Sohn MN, Harris AD, et al. Efficacy of adjunctive D-cycloserine to intermittent theta-burst stimulation for major depressive disorder: A randomized clinical trial [J]. JAMA Psychiatry, 2022, 79(12): 1153-1161.
29
Guo B, Zhang M, Hao W, et al. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression [J]. Transl Psychiatry, 2023, 13(1): 5.
30
Wang Z, Xie Z, Zhang Z, et al. Multi-platform omics sequencing dissects the atlas of plasma-derived exosomes in rats with or without depression-like behavior after traumatic spinal cord injury [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 132: 110987.
31
Du Y, Dong J, Chen L, et al. Metabolomic identification of serum exosome-derived biomarkers for bipolar disorder [J]. Oxid Med Cell Longev, 2022, 2022: 5717445.
32
Saeedi S, Nagy C, Ibrahim P, et al. Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response [J]. Mol Psychiatry, 2021, 26(12): 7417-7424.
33
Valiuliene G, Valiulis V, Zentelyte A, et al. Anti-neuroinflammatory microRNA-146a-5p as a potential biomarker for neuronavigation-guided rTMS therapy success in medication resistant depression disorder [J]. Biomed Pharmacother, 2023, 166: 115313.
[1] 黄亭, 周伟, 石祥奎. 血浆叶酸代谢物指标异常与孕妇血浆、血浆外泌体及胎盘组织中血管内皮生长因子水平降低导致早发型子痫前期中的作用及相关性分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 452-459.
[2] 潘子杭, 杨丽华, 孙轶群, 丁美军, 薛珂. 表皮干细胞来源外泌体在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 58-62.
[3] 黄淳雨, 李文馨, 蒋上, 陈佳佳. 间充质干细胞来源外泌体在肝再生领域的应用[J/OL]. 中华移植杂志(电子版), 2025, 19(04): 268-273.
[4] 曾慧, 刘朝朝, 牛雷, 邓雅洁, 徐礼霞, 沙莎. 早期肺腺癌血清外泌体miRNA特征谱及诊断标志物筛选研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 891-896.
[5] 丁琳, 梁敏莉, 钟嘉琪, 李富荣. 干细胞外泌体临床转化挑战与应对策略[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 301-311.
[6] 吴刚, 严燃星, 严鑫, 阎婧, 何跃明, 朱倩. 基于血清和组织外泌体多组学分析筛选胰腺癌诊断和预后标志物[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 962-972.
[7] 罗臻, 韦鹏程, 孙馨, 李照. 肝细胞癌骨转移研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 522-527.
[8] 张宇坤, 王春林, 周珉玮, 李震洋, 周易明, 顾晓冬, 项建斌. 放疗诱导微卫星稳定型结直肠癌细胞外泌体成分变化及其增强CD8+T细胞功能的体外研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(06): 526-532.
[9] 陈澳, 皇甫少华, 陆雅斐, 江滨. 间充质干细胞来源的外泌体多层面治疗IBD的疗效及机制探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 474-480.
[10] 马剑波, 许浩, 陈一笑. 人脐带间充质干细胞来源外泌体对脑出血后炎症反应和神经损伤的作用机制[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 280-289.
[11] 张瑜, 薛建琴, 张抗, 孙美美. 外泌体在脑卒中诊断与治疗中的基础研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 309-313.
[12] 王军, 陈娟, 刘茜红. 血浆外泌体circLPAR1在胃癌诊断及预后评估中的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 300-304.
[13] 夏雨薇, 李沛颖, 郝茹, 赵泽阳, 毛富强, 孙凌. 家庭功能对青少年抑郁的影响:心理弹性和消极应对的中介作用[J/OL]. 中华临床医师杂志(电子版), 2025, 19(11): 848-853.
[14] 谭靓靓, 王坤华, 杨莉, 于露, 丁秋, 汪天宇, 张文瑄. 基于跨理论模型的随访管理对抑郁症患者服药依从性的研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 497-503.
[15] 温欢, 苏博, 刘金波, 王宏宇. 北京市社区中老年人群非高密度脂蛋白胆固醇与高密度脂蛋白胆固醇比值与抑郁风险的关联性[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 414-419.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?