切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 303 -308. doi: 10.3877/cma.j.issn.1674-0785.2024.03.011

综述

丁酸盐治疗糖尿病肾病的研究进展
白璐1, 李青霞1, 冯一卓1, 刘雪倩1, 刘若琪1, 曲卓敏1, 赵凌霞1,()   
  1. 1. 030032 太原,山西医科大学第三医院(山西白求恩医院 山西医学科学院 同济山西医院)内分泌科
  • 收稿日期:2024-01-14 出版日期:2024-03-15
  • 通信作者: 赵凌霞
  • 基金资助:
    山西省自然科学基金项目(202103021224356)

Advances in treatment of diabetic kidney disease with butyrate

Lu Bai1, Qingxia Li1, Yizhuo Feng1, Xueqian Liu1, Ruoqi Liu1, Zhuomin Qu1, Lingxia Zhao1,()   

  1. 1. Department of Endocrinology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
  • Received:2024-01-14 Published:2024-03-15
  • Corresponding author: Lingxia Zhao
引用本文:

白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.

Lu Bai, Qingxia Li, Yizhuo Feng, Xueqian Liu, Ruoqi Liu, Zhuomin Qu, Lingxia Zhao. Advances in treatment of diabetic kidney disease with butyrate[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(03): 303-308.

糖尿病肾病是糖尿病最常见的慢性微血管并发症之一,目前常规治疗并不能完全延缓其发生和发展。因此,开发新的药物治疗糖尿病肾病并改善肾功能已经成为一个活跃的研究领域。近年来研究发现,在糖尿病肾病患者体内产丁酸盐菌丰度显著降低,丁酸盐生成减少。丁酸盐作为肠-肾轴的关键递质,通过激活G蛋白偶联受体、抑制组蛋白去乙酰化酶、调控非编码RNA的表达、诱导组蛋白丁酰化、调节细胞自噬等途径改善和减轻糖尿病肾脏损伤。该综述旨在探讨上述机制介导的丁酸盐改善糖尿病肾脏损伤作用,以及恢复肠道丁酸盐水平的相关治疗策略,为糖尿病肾病的发病机制和治疗研究提供参考。

Diabetic kidney disease is one of the most common chronic microvascular complications of diabetes mellitus, and current conventional treatments can not completely delay its onset and progression. Therefore, the development of new drugs to treat diabetic kidney disease and improve renal function has become an active area of research. In recent years, it has been found that the abundance of butyrate-producing bacteria is significantly reduced in patients with diabetic kidney disease, and butyrate production is reduced. As a key transmitter of the gut-renal axis, butyrate ameliorates and attenuates diabetic kidney injury by activating G protein-coupled receptors, inhibiting histone deacetylase, regulating non-coding RNA expression, inducing histone butyrylation, and regulating cellular autophagy. The aim of this review is to explore the role of butyrate in ameliorating diabetic kidney injury and the related therapeutic strategies for restoring intestinal butyrate levels, which will provide a reference for the study of the pathogenesis and treatment of diabetic kidney disease.

8
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010,464(7285): 59-65.
9
Shine EE, Crawford JM. Molecules from the microbiome [J]. Annu Rev Biochem, 2021,90: 789-815.
10
Evenepoel P, Poesen R, Meijers B. The gut-kidney axis [J]. Pediatr Nephrol, 2017,32(11): 2005-2014.
11
Han S, Chen M, Cheng P, et al. A systematic review and meta-analysis of gut microbiota in diabetic kidney disease: Comparisons with diabetes mellitus, non-diabetic kidney disease, and healthy individuals [J]. Front Endocrinol (Lausanne), 2022,13: 1018093.
12
Shang J, Cui W, Guo R, et al. The harmful intestinal microbial community accumulates during DKD exacerbation and microbiome-metabolome combined validation in a mouse model [J]. Front Endocrinol (Lausanne), 2022,13: 964389.
13
Cai K, Ma Y, Cai F, et al. Changes of gut microbiota in diabetic nephropathy and its effect on the progression of kidney injury [J]. Endocrine, 2022,76(2): 294-303.
14
Li Y, Qin GQ, Wang WY, et al. Short chain fatty acids for the risk of diabetic nephropathy in type 2 diabetes patients [J]. Acta Diabetol, 2022,59(7): 901-909.
15
Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood [J]. Gut, 1987,28(10): 1221-1227.
16
Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data [J]. mBio, 2014,5(2): e00889.
17
Boets E, Gomand SV, Deroover L, et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study [J]. J Physiol, 2017,595(2): 541-555.
18
Pryde SE, Duncan SH, Hold GL, et al. The microbiology of butyrate formation in the human colon [J]. FEMS Microbiol Lett, 2002,217(2): 133-139.
19
Yan M, Li X, Sun C, et al. Sodium butyrate attenuates AGEs-induced oxidative stress and inflammation by inhibiting autophagy and affecting cellular metabolism in THP-1 cells [J/OL]. Molecules (Basel, Switzerland), 2022,27(24): 8715.
20
Sun J, Wang Y, Cui W, et al. Role of epigenetic histone modifications in diabetic kidney disease involving renal fibrosis [J]. J Diabetes Res, 2017,2017: 7242384.
21
Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease [J]. Adv Immunol, 2014,121: 91-119.
22
Khan S, Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats [J]. Food Chem Toxicol, 2014,73: 127-139.
23
Dong W, Jia Y, Liu X, et al. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC [J]. J Endocrinol, 2017,232(1): 71-83.
24
Du Y, Tang G, Yuan W. Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG‑induced NRK‑52E cells [J]. Int J Mol Med, 2020,45(1): 210-222.
1
Boughton CK, Tripyla A, Hartnell S, et al. Publisher Correction: Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial [J/OL]. Nature Medicine, 2021,27(10): 1850-1850.
2
杨莉, 迟春花, 吕继成, 等. 中国糖尿病肾脏病基层管理指南 [J]. 中华全科医师杂志, 2023,22(2): 146-157.
3
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes Atlas, 9th edition [J]. Diabetes Res Clin Pract, 2019,157: 107843.
4
Kawanami D, Matoba K, Utsunomiya K. Signaling pathways in diabetic nephropathy [J]. Histol Histopathol, 2016,31(10): 1059-1067.
5
Zhong C, Dai Z, Chai L, et al. The change of gut microbiota-derived short-chain fatty acids in diabetic kidney disease [J]. J Clin Lab Anal, 2021,35(12): e24062.
6
Zhang L, Wang Z, Zhang X, et al. Alterations of the gut microbiota in patients with diabetic nephropathy [J]. Microbiol Spectr, 2022,10(4): e0032422.
7
叶凯丽, 黄诗琴, 胡婷, 等. 丁酸盐对糖尿病肾病小鼠肾损伤的保护作用及机制 [J]. 温州医科大学学报, 2023,53(1): 42-48.
25
Miyamoto J, Hasegawa S, Kasubuchi M, et al. Nutritional signaling via free fatty acid receptors [J]. Int J Mol Sci, 2016,17(4): 450.
26
Cheng X, Zhou T, He Y, et al. The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease [J]. Front Microbiol, 2022,13: 961536.
27
Huang W, Man Y, Gao C, et al. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-κB signaling [J]. Oxid Med Cell Longev, 2020,2020: 4074832.
28
Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome [J]. Nat Commun, 2015,6: 6734.
29
Feng W, Wu Y, Chen G, et al. Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner [J]. Cell Physiol Biochem, 2018,47(4): 1617-1629.
30
Li YJ, Chen X, Kwan TK, et al. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A [J]. J Am Soc Nephrol, 2020,31(6): 1267-1281.
31
Ren H, Wang Q. Non-coding RNA and diabetic kidney disease [J]. DNA Cell Biol, 2021,40(4): 553-567.
32
Belcheva A. MicroRNAs at the epicenter of intestinal homeostasis [J]. Bioessays, 2017,39(3).
33
毛玉熠, 李格菲, 韩睿. microRNAs调控糖尿病肾病发展的研究进展 [J/OL]. 中华临床医师杂志(电子版), 2021,15(2): 133-138.
34
Du Y, Yang YT, Tang G, et al. Butyrate alleviates diabetic kidney disease by mediating the miR-7a-5p/P311/TGF-β1 pathway [J]. FASEB J, 2020,34(8): 10462-10475.
35
Zhang P, Sun Y, Peng R, et al. Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3 [J]. Cell Death Dis, 2019,10(7): 526.
36
Yang H, Zhang Z, Peng R, et al. RNA-Seq analysis reveals critical transcriptome changes caused by sodium butyrate in DN mouse models [J]. Biosci Rep, 2021,41(4): BSR20203005.
37
Lin TA, Wu VC, Wang CY. Autophagy in chronic kidney diseases [J]. Cells, 2019,8(1): 61.
38
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research [J/OL]. Cell, 2010,140(3): 313-326.
39
Lou D, Zhang X, Jiang C, et al. 3β,23-Dihydroxy-12-ene-28-ursolic acid isolated from cyclocarya paliurus alleviates NLRP3 inflammasome-mediated gout via PI3K-AKT-mTOR-dependent autophagy [J]. Evid Based Complement Alternat Med, 2022,2022: 5541232.
40
Ma X, Wang Q. Short-chain fatty acids attenuate renal fibrosis and enhance autophagy of renal tubular cells in diabetic mice through the HDAC2/ULK1 axis [J]. Endocrinol Metab (Seoul), 2022,37(3): 432-443.
41
Ruiz-Andres O, Sanchez-Niño MD, Cannata-Ortiz P, et al. Histone lysine crotonylation during acute kidney injury in mice [J]. Dis Model Mech, 2016,9(6): 633-645.
42
Chen Y, Sprung R, Tang Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones [J]. Mol Cell Proteomics, 2007,6(5): 812-819.
43
Luo W, Yu Y, Wang H, et al. Up-regulation of MMP-2 by histone H3K9 β-hydroxybutyrylation to antagonize glomerulosclerosis in diabetic rat [J]. Acta Diabetol, 2020,57(12): 1501-1509.
44
欧阳琳, 王燕飞, 侯粲. 组蛋白翻译后修饰在糖尿病肾病发病中的作用 [J]. 中华肾脏病杂志, 2015,31(7): 553-556.
45
Zhou T, Xu H, Cheng X, et al. Sodium butyrate attenuates diabetic kidney disease partially via histone butyrylation modification [J]. Mediators Inflamm, 2022,2022: 7643322.
46
Luo L, Luo J, Cai Y, et al. Inulin-type fructans change the gut microbiota and prevent the development of diabetic nephropathy [J]. Pharmacol Res, 2022,183: 106367.
47
Carvalho CM, Gross LA, de Azevedo MJ, et al. Dietary fiber intake (supplemental or dietary pattern rich in fiber) and diabetic kidney disease: A systematic review of clinical trials [J]. Nutrients, 2019,11(2): 347.
48
Ni Y, Zheng L, Nan S, et al. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota [J]. Acta Biochim Biophys Sin (Shanghai), 2022,54(10): 1406-1420.
49
Zhu H, Cao C, Wu Z, et al. casei Zhang slows the progression of acute and chronic kidney disease [J]. Cell Metab, 2021,33(10): 1926-1942.e8.
50
Yang J, Li Y, Wen Z, et al. Oscillospira - a candidate for the next-generation probiotics [J]. Gut Microbes, 2021,13(1): 1987783.
51
Zaky A, Glastras SJ, Wong MYW, et al. The role of the gut microbiome in diabetes and obesity-related kidney disease [J]. Int J Mol Sci, 2021,22(17): 9641.
52
Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition [J]. Cell Metab, 2017,26(4): 611-619.e6.
53
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome [J]. Gastroenterology, 2012,143(4): 913-6.e7.
54
Bastos RMC, Simplício-Filho A, Sávio-Silva C, et al. Fecal microbiota transplant in a pre-clinical model of type 2 diabetes mellitus, obesity and diabetic kidney disease [J]. Int J Mol Sci, 2022,23(7): 3842.
55
Hu ZB, Lu J, Chen PP, et al. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis [J]. Theranostics, 2020,10(6): 2803-2816.
56
Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes [J]. Diabetes, 2015,64(5): 1794-1803.
57
Han C, Zhang X, Pang G, et al. Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs [J]. Biomaterials, 2022,287: 121619.
[1] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[2] 彭聪, 罗晓英, 白阳秋, 江小柯, 张炳勇. 肠道菌群代谢产物与间充质干细胞相互作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 367-371.
[3] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[4] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[5] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[6] 雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.
[7] 徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.
[8] 谭莹, 朱鹏飞, 李楠, 黄莉吉, 周希乔, 严倩华, 余江毅. 火把花根片联合黄葵胶囊治疗高或极高进展风险糖尿病肾病的临床探索[J]. 中华临床医师杂志(电子版), 2024, 18(02): 171-177.
[9] 黄莉吉, 王婷, 朱鹏飞, 刘敬顺, 余江毅, 谢绍锋. 芪葵颗粒联合火把花根片对G3A3期糖尿病肾病的疗效及对血清miRNA-21的影响[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1247-1252.
[10] 邬秋俊, 向茜. 甘油三酯-葡萄糖指数与2型糖尿病微血管并发症相关性的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1109-1112.
[11] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[12] 朱艺平, 陈一平, 赵艳英, 陆玮玮, 牙侯军, 苏复霞. 二十味沉香丸调控糖尿病肾病大鼠肠道菌群益生菌构成的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 572-578.
[13] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[14] 王慧卿, 李银玉, 张继敏, 黄正丽, 孙喜明, 薛少青, 焦爱富, 赵慧媛, 尉杰忠. 血清adipsin及皮下脂肪面积与早期糖尿病肾病的相关性分析[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 256-262.
[15] 沈地, 权莉, 梁存禹, 孟齐, 艾比拜·玉素甫. 葡萄糖目标范围内时间与2型糖尿病患者尿微量白蛋白水平的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 249-255.
阅读次数
全文


摘要