1 |
Wei S, Ma JX, Xu L, et al. Biodegradable materials for bone defect repair[J]. Mil Med Res, 2020,7(1):54.
|
2 |
Habibovic P. Strategic directions in osteoinduction and biomimetics[J]. Tissue Eng Part A, 2017,23(23-24):1295-1296.
|
3 |
Wang J, Liu Q, Guo Z, et al. Progress on biomimetic mineralization and materials for hard tissue regeneration[J]. ACS Biomater Sci Eng, 2023,9(4):1757-1773.
|
4 |
Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update[J]. Injury, 2005,36Suppl 3:S20-27.
|
5 |
Baldwin P, Li DJ, Auston DA, et al. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery[J]. J Orthop Trauma, 2019,33(4):203-213.
|
6 |
殷渠东, 顾三军, 芮永军,等. 松质骨包裹植骨技术治疗长骨节段性骨缺损[J]. 中华创伤骨科杂志,2017,19(9):775-781.
|
7 |
Schmidt AH. Autologous bone graft: is it still the gold standard?[J]. Injury, 2021,52Suppl 2:S18-S22.
|
8 |
胡小晓, 叶剑平, 蒋志勇,等. 微创方法结合自体外周血干细胞及同种异体冻干骨载体治疗四肢骨干术后骨不愈合[J]. 中国骨与关节损伤杂志,2015,30(5):536-537.
|
9 |
Miron RJ, Gruber R, Hedbom E, et al. Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts[J]. Clin Implant Dent Relat Res, 2013,15(4):481-489.
|
10 |
Zheng J, Zhao Z, Yang Y, et al. Biphasic mineralized collagen-based composite scaffold for cranial bone regeneration in developing sheep[J]. Regen Biomater, 2022,9:rbac004.
|
11 |
DiMaio FR. The science of bone cement: a historical review[J]. Orthopedics, 2002,25(12):1399-1407.
|
12 |
Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration[J]. Nat Rev Rheumatol, 2009,5(12):685-697.
|
13 |
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020,110:110698.
|
14 |
Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair[J]. Int J Mol Sci, 2021,22(2):944.
|
15 |
Gong T, Xie J, Liao J, et al. Nanomaterials and bone regeneration[J]. Bone Res, 2015,3:15029.
|
16 |
Liu CD, Jiang LY, Du WT, et al. Synergistic intrafibrillar/extrafibrillar mineralization of collagen fibrils and scaffolds enhanced by introducing polyacrylamide to PILP for osteogenic differentiation[J]. J Appl Polym Sci,2023,140(33): 54275.
|
17 |
Weiner S, Dove MP. An overview of biomineralization processes and the problem of the vital effect[J]. Rev Mineral Geochem,2003,54(1):1-29.
|
18 |
Fratzl P, Gupta SH,Paschalis PE, et al. Structure and mechanical quality of the collagen mineral nano-composite in bone[J]. J Mater Chem, 2004, 14(14):2115-2123.
|
19 |
Al-Qudsy L, Hu YW, Xu H, et al. Mineralized collagen fibrils: an essential component in determining the mechanical behavior of cortical bone[J]. ACS Biomater Sci Eng, 2023,9(5):2203-2219.
|
20 |
Rollo J, Boffa R, Cesar R, et al. Assessment of trabecular bones microarchitectures and crystal structure of hydroxyapatite in bone osteoporosis with application of the rietveld method[J]. Procedia Eng,2015:1108-1114.
|
21 |
Li Z, Du T, Ruan C, et al. Bioinspired mineralized collagen scaffolds for bone tissue engineering[J]. Bioact Mater, 2021,6(5):1491-1511.
|
22 |
Du T, Niu Y, Liu Y, et al. Physical and chemical characterization of biomineralized collagen with different microstructures[J]. J Funct Biomater, 2022,13(2):57.
|
23 |
Du T, Niu Y, Jia Z, et al. Orthophosphate and alkaline phosphatase induced the formation of apatite with different multilayered structures and mineralization balance[J]. Nanoscale, 2022,14(5):1814-1825.
|
24 |
Hassan M, Sulaiman M, Yuvaraju PD, et al. Biomimetic PLGA/strontium-zinc nano hydroxyapatite composite scaffolds for bone regeneration[J]. J Funct Biomater, 2022,13(1):13.
|
25 |
Hu C, Zhang L, Wei M. Development of biomimetic scaffolds with both intrafibrillar and extrafibrillar mineralization[J]. ACS Biomater Sci Eng, 2015,1(8):669-676.
|
26 |
Meng Q, An S, Damion RA, et al. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage[J]. J Mech Behav Biomed Mater, 2017,65:439-453.
|
27 |
Liu Y, Li N, Qi YP, et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly[J]. Adv Mater, 2011,23(8):975-980.
|
28 |
Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nat Mater, 2015,14(1):23-36.
|
29 |
Wang Y, Van Manh N, Wang H, et al. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects[J]. Int J Nanomedicine, 2016,11:2053-2067.
|
30 |
Du T, Niu X, Hou S, et al. Apatite minerals derived from collagen phosphorylation modification induce the hierarchical intrafibrillar mineralization of collagen fibers[J]. J Biomed Mater Res A, 2019,107(11):2403-2413.
|
31 |
Matlahov I, Iline-vul T, Abayev M, et al. Interfacial mineral-peptide properties of a mineral binding peptide from osteonectin and bone-like apatite[J]. Chem Mater,2015,27(16):5562-5569.
|
32 |
Du TM, Yang HS, Niu XF. Phosphorus-containing compounds regulate mineralization[J]. Mater Today Chem,2021,22:100579.
|
33 |
Minardi S, Taraballi F, Cabrera FJ, et al. Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model[J]. Mater Today Bio, 2019, 2:100005.
|
34 |
Xu SJ, Qiu ZY, Wu JJ, et al. Osteogenic differentiation gene expression profiling of hmscs on hydroxyapatite and mineralized collagen[J]. Tissue Eng Part A, 2016,22(1-2):170-181.
|
35 |
Cunniffe GM, Dickson GR, Partap S, et al. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering[J]. J Mater Sci Mater Med, 2010,21(8):2293-2298.
|
36 |
Tiffany AS, Gray DL, Woods TJ, et al. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications[J]. Acta Biomater, 2019,93:86-96.
|
37 |
Yu L, Rowe DW, Perera IP, et al. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration[J]. ACS Appl Mater Interfaces, 2020,12(16):18235-18249.
|
38 |
Munhoz M, Hirata HH, Plepis A, et al. Use of collagen/chitosan sponges mineralized with hydroxyapatite for the repair of cranial defects in rats[J]. Injury, 2018,49(12):2154-2160.
|
39 |
Olson YT, Orme AC, Han YT, et al. Shape control synthesis of fluorapatite structures based on supersaturation: prismatic nanowires, ellipsoids, star, and aggregate formation[J]. Cryst Eng Comm, 2012.
|
40 |
Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review[J]. Materials (Basel), 2019,12(17):2683.
|
41 |
Jiang W, Griffanti G, Tamimi F, et al. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels[J]. J Struct Biol, 2020,212(1):107592.
|
42 |
Yu Q, Wang C, Yang J, et al. Mineralized collagen/Mg-Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction[J]. Biomed Mater, 2018,13(6):065008.
|
43 |
Zhang Z, Li Z, Zhang C, et al. Biomimetic intrafibrillar mineralized collagen promotes bone regeneration via activation of the Wnt signaling pathway[J]. Int J Nanomedicine, 2018,13:7503-7516.
|
44 |
Yang L, Manoj P. Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing[J]. Acta Biomaterialia,2023,162164-181.
|
45 |
Mohseni M, Jahandideh A, Abedi G, et al. Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits[J]. Artif Cells Nanomed Biotechnol, 2018,46(2):242-249.
|
46 |
Zhu W, Li C, Yao M, et al. Advances in osseointegration of biomimetic mineralized collagen and inorganic metal elements of natural bone for bone repair[J]. Regen Biomater, 2023,10:rbad030.
|