1 |
Bonney A, Malouf R, Marchal C, et al.Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality [J].Cochrane Db Syst Rev, 2022, 8(8): CD013829.
|
2 |
中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组.肺结节诊治中国专家共识 (2018 年版) [J].中华结核和呼吸杂志,2018, 41(10): 763-771.
|
3 |
He YT, Zhang YC, Shi GF, et al.Risk factors for pulmonary nodules in north China: A prospective cohort study [J].Lung Cancer (Amsterdam,Netherlands), 2018, 120: 122-129.
|
4 |
钟华, 姚烽, 陈群慧, 等.肺部多发结节的诊断和治疗 [J].中华肿瘤杂志, 2023, 45(6): 455-463.
|
5 |
Hattori A, Matsunaga T, Takamochi K, et al.Surgical management of multifocal ground-glass opacities of the lung: correlation of clinicopathologic and radiologic findings [J].Thorac Cardiovasc Surg,2017, 65(2): 142-149.
|
6 |
Pan W, Fang X, Zang Z, et al.Diagnostic efficiency of artificial intelligence for pulmonary nodules based on CT scans [J].Am J Transl Res, 2023, 15(5): 3318-3325.
|
7 |
Liu P ran, Lu L, Zhang J yao, et al.Application of artificial intelligence in medicine: An overview [J].Current Medical Science, 2021, 41(6):1105-1115.
|
8 |
Basu K, Sinha R, Ong A, et al.Artificial intelligence: How is it changing medical sciences and its future? [J].Indian J Dermatol, 2020,65(5): 365-370.
|
9 |
郑娟, 徐兴祥.多发性肺结节的临床研究进展 [J].国际呼吸杂志,2021, 41(24).
|
10 |
Fu F, Zhang Y, Wen Z, et al.Distinct prognostic factors in patients with stage I non-small cell lung cancer with radiologic part-solid or solid lesions [J].J Thorac Oncol, 2019, 14(12): 2133-2142.
|
11 |
Callister ME, Baldwin DR, Akram AR, et al.British Thoracic Society guidelines for the investigation and management of pulmonary nodules[J].Thorax, 2015, 70 Suppl 2: ii1-ii54.
|
12 |
Jiang N, Zhang L, Hao Y, et al.Combination of electromagnetic navigation bronchoscopy-guided microwave ablation and thoracoscopic resection: An alternative for treatment of multiple pulmonary nodules [J].Thorac Cancer, 2020, 11(6): 1728-1733.
|
13 |
陈丽, 徐培, 唐丽娜, 等.530 例肺结节患者的临床病理特征分析[J].广西医学, 2021, 43(16): 1977-1980.
|
14 |
颜世锐, 许萌.以多发肺结节起病的盖尔森基兴奴卡菌感染一例[J/OL].中华临床医师杂志(电子版), 2022, 16(8): 815-817.
|
15 |
Taci H, Söyler Y, Uğurman F, et al.An uncommon cause of multiple pulmonary nodules: pulmonary hyalinizing granuloma [J].Hippokratia, 2019, 23(1): 33-36.
|
16 |
Ather S, Kadir T, Gleeson F.Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications[J].Clin Radiol, 2020, 75(1):13-19.
|
17 |
Marchianò A, Calabrò E, Civelli E, et al.Pulmonary nodules: volume repeatability at multidetector CT lung cancer screening [J].Radiology,2009, 251(3):919-925.
|
18 |
Mehta HJ, Ravenel JG, Shaftman SR, et al.The utility of nodule volume in the context of malignancy prediction for small pulmonary nodules [J].Chest, 2014, 145(3):464-472.
|
19 |
Yu WS, Hong SR, Lee JG, et al.Three-dimensional ground glass opacity ratio in CT images can predict tumor invasiveness of stage IA lung cancer [J].Yonsei Med J, 2016, 57(5): 1131-1138.
|
20 |
Li X, Hu B, Li H, et al.Application of artificial intelligence in the diagnosis of multiple primary lung cancer [J].Thorac Cancer, 2019,10(11): 2168-2174.
|
21 |
National Lung Screening Trial Research Team; Aberle DR, Adams AM, Berg CD, et al.Reduced lung-cancer mortality with low-dose computed tomographic screening [J].N Engl J Med, 2011, 365(5):395-409.
|
22 |
Armato SG, McLennan G, Bidaut L, et al.The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI):a completed reference database of lung nodules on CT scans [J].Med Phys, 2011, 38(2):915-931.
|
23 |
Masood A, Sheng B, Yang P, et al.Automated decision support system for lung cancer detection and classification via enhanced RFCN with multilayer fusion RPN [J].IEEE Trans Ind Informat, 2020, 16(12):7791-7801.
|
24 |
Nakaura T, Higaki T, Awai K, et al.A primer for understanding radiology articles about machine learning and deep learning [J].Diagn Interv Imaging, 2020, 101(12): 765-770.
|
25 |
Chassagnon G, De Margerie-Mellon C, Vakalopoulou M, et al.Artificial intelligence in lung cancer: current applications and perspectives [J].Jpn J Radiol, 2023, 41(3): 235-244.
|
26 |
Peeken JC, Asadpour R, Specht K, et al.MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy [J].Radiother Oncol, 2021, 164: 73-82.
|
27 |
Ma Y, Li J, Xu X, et al.The CT delta-radiomics based machine learning approach in evaluating multiple primary lung adenocarcinoma[J].BMC Cancer, 2022, 22(1): 949.
|
28 |
Chen K, Nie Y, Park S, et al.Development and validation of machine learning-based model for the prediction of malignancy in multiple pulmonary nodules: Analysis from multicentric cohorts [J].Clin Cancer Res, 2021, 27(8): 2255-2265.
|
29 |
Zhang L, Shao Y, Chen G, et al.An artificial intelligence-assisted diagnostic system for the prediction of benignity and malignancy of pulmonary nodules and its practical value for patients with different clinical characteristics [J].Front Med (Lausanne), 2023, 10: 1286433.
|
30 |
Lv J, Li J, Liu Y, et al.Artificial intelligence-aided diagnosis software to identify highly suspicious pulmonary nodules [J].Front Oncol,2021, 11: 749219.
|
31 |
林绍涌, 朱先理, 魏梁锋, 等.ChatGPT 在临床医学实践中的应用进展 [J/OL].中华临床医师杂志 (电子版), 2023, 17(10): 1113-1116.
|
32 |
Liu Q, Lv X, Zhou D, et al.Establishment and validation of multiclassification prediction models for pulmonary nodules based on machine learning [J].Clin Respir J, 2024, 18(5): e13769.
|
33 |
Takeshita Y, Onozawa S, Katase S, et al.Evaluation of an artificial intelligence U-net algorithm for pulmonary nodule tracking on chest computed tomography images [J].J Int Med Res, 2024, 52(2):03000605241230033.
|
34 |
Fan W, Liu H, Zhang Y, et al.Diagnostic value of artificial intelligence based on computed tomography (CT) density in benign and malignant pulmonary nodules: a retrospective investigation [J].Peerj, 2024, 12:e16577.
|
35 |
Zhang H, Wang S, Deng Z, et al.Computed tomography-based radiomics machine learning models for prediction of histological invasiveness with sub-centimeter subsolid pulmonary nodules: a retrospective study [J].Peerj, 2023, 11: e14559.
|
36 |
Mu J, Kuang K, Ao M, et al.Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans [J].Frontiers in Medicine, 2023, 10: 1145846.
|
37 |
Tang TW, Lin WY, Liang JD, et al.Artificial intelligence aided diagnosis of pulmonary nodules segmentation and feature extraction[J].Clin Radiol, 2023, 78(6): 437-443.
|
38 |
Zhang K, Wei ZH, Wang X, et al.[The diagnostic value of machinelearning-based model for predicting the malignancy of solid nodules in multiple pulmonary nodules] [J].Zhonghua Wai Ke Za Zhi, 2022,60(6): 573-579.
|
39 |
Zhang R, Wei Y, Shi F, et al.The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images [J].BMC Cancer, 2022,22(1): 1118.
|
40 |
Ge Z, Sahiner B, Chan HP, et al.Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting [J].Med Phys, 2005, 32(8): 2443-2454.
|
41 |
Coppini G, Diciotti S, Falchini M, et al.Neural networks for computeraided diagnosis: detection of lung nodules in chest radiograms [J].IEEE Trans Inf Technol Biomed, 2003, 7(4): 344-357.
|