1 |
中国心血管健康与疾病报告2023概要 [J]. 中国循环杂志, 2024, 39(7): 625-660.
|
2 |
Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis [J]. Eur Heart J, 2017, 38(7): 500-507.
|
3 |
王宏宇. 血管医学 [M]. 1版. 北京: 人民军医出版社, 2006: 1-6.
|
4 |
王宏宇. 推广血管健康理念,促进血管医学专业发展 [J]. 中国循环杂志, 2018, 33(10): 1026-1028.
|
5 |
Wang HY, Liu H. Promote the comprehensive assessment of heart and vascular health and raise the public's awareness of vascular health-interpretation of the Chinese Guideline for Application on Assessment System of Vascular Health (CAVH2018,The Third Report) [J]. Chin Med J, 2018, 98(37): 2953-2954.
|
6 |
中国血管病变早期检测技术标准化建议(草案) [J]. 中国民康医学, 2005, 17(z1): 2-5, 8.
|
7 |
王宏宇. 血管医学:血管健康评价与血管疾病综合防治 [J]. 中华医学杂志, 2010, 90(30): 2092-2093.
|
8 |
蒋姗彤,王宏宇. 基于北京血管健康分级指导的智能化全生命周期心脏和血管健康管理 [J/OL]. 中华临床医师杂志(电子版), 2019, 13(11): 868-871.
|
9 |
Liu H, Zhou X, Liu J, et al. Rationale and design of the application value of Beijing Vascular Health Stratification (BVHS): predictive value of combined assessment of vascular structure and function for cardiovascular events in general Chinese population [J]. BMC Cardiovasc Disord, 2021, 21(1): 498.
|
10 |
中国医药教育协会血管医学专业委员会, 中华医学会北京心血管病学分会血管专业学组, 北京大学医学部血管疾病社区防治中心. 中国血管健康评估系统应用指南(2018第三次报告) [J]. 中华医学杂志, 2018, 98(37): 2955-2967.
|
11 |
中国智慧化血管健康全生命周期数字管理分级诊疗实践指南编写组, 中国医药教育协会血管医学专业委员会, 中国研究型医院学会移动医疗专业委员会, 等. 中国智慧化血管健康全生命周期数字管理分级诊疗实践指南(2022第一次报告) [J]. 心血管病学进展, 2023, 44(1): 71-81.
|
12 |
王宏宇. 北京大学血管医学临床诊疗常规 [M]. 北京, 北京大学医学出版社, 2021: 37-70.
|
13 |
Sana F, Isselbacher EM, Singh JP, et al. Wearable devices for ambulatory cardiac monitoring: JACC State-of-the-Art review [J]. J Am Coll Cardiol, 2020, 75(13): 1582-1592.
|
14 |
Prieto-Avalos G, Cruz-Ramos NA, Alor-Hernández G, et al. Wearable devices for physical monitoring of heart: A review [J]. Biosensors (Basel), 2022, 12(5): 292.
|
15 |
Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward [J]. Nat Rev Cardiol, 2021, 18(8): 581-599.
|
16 |
刘靖,刘静,张宇清, 等. 智能可穿戴设备在中青年血压管理中应用中国专家共识 [J]. 中华高血压杂志, 2022, 30(8): 720-724.
|
17 |
Zhang W, Zhou YN, Zhou Y, et al. Validation of the watch-type HUAWEI WATCH D oscillometric wrist blood pressure monitor in adult Chinese [J]. Blood Press Monit, 2022, 27(5): 353-356.
|
18 |
Saito K, Hishiki Y, Takahashi H. Validation of two automatic devices, Omron HEM-6232T and HEM-6181, for self-measurement of blood pressure at the wrist according to the ANSI/AAMI/ISO 81060-2:2013 protocol and the European Society of Hypertension International Protocol revision 2010 [J]. Vasc Health Risk Manag, 2019, 15: 47-55.
|
19 |
Li XC, Liu XH, Liu LB, et al. Evaluation of left ventricular systolic function using synchronized analysis of heart sounds and the electrocardiogram [J]. Heart Rhythm, 2020, 17(5 Pt B): 876-880.
|
20 |
Meng K, Xiao X, Wei W, et al. Wearable pressure sensors for pulse wave monitoring [J]. Adv Mater, 2022, 34(21): e2109357.
|
21 |
Zhang Y, Zhang L, Wang L, et al. Subcutaneous depth-selective spectral imaging with mμSORS enables noninvasive glucose monitoring [J]. Nat Metab, 2025, 7(2): 421-433.
|
22 |
Ajjan RA, Battelino T, Cos X, et al. Continuous glucose monitoring for the routine care of type 2 diabetes mellitus [J]. Nat Rev Endocrinol, 2024, 20(7): 426-440.
|
23 |
Nightingale AM, Leong CL, Burnish RA, et al. Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor [J]. Nat Commun, 2019, 10(1): 2741.
|
24 |
Aging Biomarker Consortium; Zhang L, Guo J, Liu Y, et al. A framework of biomarkers for vascular aging: a consensus statement by the aging biomarker consortium [J]. Life Med, 2023, 2(4): lnad033.
|
25 |
Aging Biomarker Consortium; Zhang W, Che Y, Tang X, et al. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement [J]. Life Med, 2023, 2(5): lnad035.
|
26 |
Lin S, Li Z, Fu B, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo [J]. Eur Heart J, 2020, 41(46): 4400-4411.
|
27 |
白秀,王宏宇. 《中国非传统血管健康危险因素管理策略专家共识(2022第一次报告)》解读 [J]. 中国心血管杂志, 2023, 28(5): 407-410.
|
28 |
王青云. 国家药监局发布《中药注册分类及申报资料要求》 [J]. 中医药管理杂志, 2020, 28(20): 79.
|
29 |
Wang Z, Wang L, Xiao F, et al. A traditional Chinese medicine traceability system based on lightweight blockchain [J]. J Med Internet Res, 2021, 23(6): e25946.
|
30 |
Lyu M, Yan CL, Liu HX, et al. Network pharmacology exploration reveals endothelial inflammation as a common mechanism for stroke and coronary artery disease treatment of Danhong injection [J]. Sci Rep, 2017, 7(1): 15427.
|
31 |
Eickhoff MK, Winther SA, Hansen TW, et al. Assessment of the sublingual microcirculation with the GlycoCheck system: Reproducibility and examination conditions [J]. PLoS One, 2020, 15(12): e0243737.
|
32 |
卫生健康委, 发展改革委, 教育部, 等. 中国残联关于印发加快推进康复医疗工作发展意见的通知[R]. 中华人民共和国国务院公报, 2021, (24): 75-79.
|
33 |
车琳,戴翠莲,刘伟静, 等. 心脏康复分级诊疗中国专家共识 [J]. 中国介入心脏病学杂志, 2022, 30(8): 561-572.
|
34 |
Tenekecioglu E, Serruys PW, Onuma Y, et al. Randomized comparison of absorb bioresorbable vascular scaffold and mirage microfiber sirolimus-eluting scaffold using multimodality imaging [J]. JACC Cardiovasc Interv, 2017, 10(11): 1115-1130.
|
35 |
Nakamura M, Suzuki N, Fujii K, et al. The absorb GT1 bioresorbable vascular scaffold System- 5-year post-market surveillance study in Japan[J]. Circ J, 2024, 88(6): 863-872.
|
36 |
Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes[J]. Eur Heart J, 2023, 44(38): 3720-3826.
|
37 |
血管内超声在冠状动脉疾病中应用的中国专家共识专家组. 血管内超声在冠状动脉疾病中应用的中国专家共识(2018) [J]. 中华心血管病杂志, 2018, 46(5): 344-351.
|
38 |
Choi KH, Dai N, Li Y, et al. Functional coronary angiography-derived index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction [J]. JACC Cardiovasc Interv, 2021, 14(15): 1670-1684.
|
39 |
Gouëffic Y, Brodmann M, Deloose K, et al. Drug-eluting devices for lower limb peripheral arterial disease [J]. EuroIntervention, 2024, 20(18): e1136-e1153.
|
40 |
Marulanda K, Genovese EA. Adjunctive utilization of intravascular ultrasound in peripheral arterial disease treatment [J]. Ann Vasc Surg, 2024, 107: 195-207.
|
41 |
Tung ET, Yim KHC, Li CL, et al. Optical coherence tomography in peripheral arterial disease: A systematic review [J]. Int J Clin Pract, 2021, 75(10): e14628.
|
42 |
Sampedro-Gómez J, Dorado-Díaz PI, Vicente-Palacios V, et al. Machine learning to predict stent restenosis based on daily demographic, clinical, and angiographic characteristics [J]. Can J Cardiol, 2020, 36(10): 1624-1632.
|
43 |
Zhang X, Jin H, Huang X, et al. Robust genome editing in adult vascular endothelium by nanoparticle delivery of CRISPR-Cas9 plasmid DNA [J]. Cell Rep, 2022, 38(1): 110196.
|
44 |
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J]. Lancet, 2019, 394(10201): 861-867.
|
45 |
Wu TT, Zheng RF, Lin ZZ, et al. A machine learning model to predict critical care outcomes in patient with chest pain visiting the emergency department [J]. BMC Emerg Med, 2021, 21(1): 112.
|
46 |
Deng YT, You J, He Y, et al. Atlas of the plasma proteome in health and disease in 53,026 adults[J]. Cell, 2025,188(1):253-271.e7.
|
47 |
Armoundas AA, Narayan SM, Arnett DK, et al. Use of artificial intelligence in improving outcomes in heart disease: A scientific statement from the American heart association [J]. Circulation, 2024, 149(14): e1028-e1050.
|