1 |
Friedrich MJ. Depression is the leading cause of disability around the world [J]. JAMA, 2017, 18, 317(15):1517.
|
2 |
de Aguiar Neto FS, Rosa JLG. Depression biomarkers using non-invasive EEG: A review [J]. Neurosci Biobehav Rev, 2019, 105: 83-93.
|
3 |
Fonzo GA, Goodkind MS, Oathes DJ, et al. PTSD psychotherapy outcome predicted by brain activation during emotional reactivity and regulation [J]. Am J Psychiatry, 2017, 174(12): 1163-1174.
|
4 |
Zhang Y, Wu W, Toll RT, et al. Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography [J]. Nat Biomed Eng, 2021, 5(4): 309-323.
|
5 |
Dell'Acqua C, Ghiasi S, Messerotti Benvenuti S, et al. Increased functional connectivity within alpha and theta frequency bands in dysphoria: A resting-state EEG study [J]. J Affect Disord, 2021, 281: 199-207.
|
6 |
Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression [J]. PLoS One, 2012, 7(2): e32508.
|
7 |
Linkenkaer-Hansen K, Monto S, Rytsälä H, et al. Breakdown of long-range temporal correlations in theta oscillations in patients with major depressive disorder [J]. J Neurosci, 2005, 25(44): 10131-10137.
|
8 |
Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clin Neurophysiol, 1999, 110(11): 1842-1857.
|
9 |
Thatcher RW, Krause PJ, Hrybyk M. Cortico-cortical associations and EEG coherence: a two-compartmental model [J]. Electroencephalogr Clin Neurophysiol, 1986, 64(2): 123-143.
|
10 |
von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization [J]. Int J Psychophysiol, 2000, 38(3): 301-313.
|
11 |
Del Percio C, Iacoboni M, Lizio R, et al. Functional coupling of parietal α rhythms is enhanced in athletes before visuomotor performance: a coherence electroencephalographic study [J]. Neuroscience, 2011, 23, 175: 198-211.
|
12 |
Babiloni C, Brancucci A, Vecchio F, et al. Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study [J]. Clin Neurophysiol, 2006, 117(5): 1000-1008.
|
13 |
Sauseng P, Klimesch W, Stadler W, et al. A shift of visual spatial attention is selectively associated with human EEG alpha activity [J]. Eur J Neurosci, 2005, 22(11): 2917-2926.
|
14 |
O'Connor KP, Shaw JC, Ongley CO. The EEG and differential diagnosis in psychogeriatrics [J]. Br J Psychiatry, 1979, 135: 156-162.
|
15 |
Fingelkurts AA, Fingelkurts AA, Rytsälä H, et al. Impaired functional connectivity at EEG alpha and theta frequency bands in major depression [J]. Hum Brain Mapp, 2007, 28(3):247-261.
|
16 |
刘潇雅, 刘爽, 郭冬月, 等. 抑郁症脑电特异性研究进展 [J]. 中国生物医学工程学报, 2020, 39(3): 351-361.
|
17 |
Armitage R, Emslie GJ, Hoffmann RF, et al. Delta sleep EEG in depressed adolescent females and healthy controls [J]. J Affect Disord, 2001, 63(1-3): 139-148..
|
18 |
Epp JR, Beasley CL, Galea LA. Increased hippocampal neurogenesis and p21 expression in depression: dependent on antidepressants, sex, age, and antipsychotic exposure [J]. Neuropsychopharmacology, 2013, 38(11): 2297-2306.
|
19 |
Lee SM, Jang KI, Chae JH. Electroencephalographic correlates of suicidal ideation in the Theta band [J]. Clin EEG Neurosci, 2017, 48(5): 316-321.
|
20 |
Haghighi M, Ludyga S, Rahimi B, et al. In patients suffering from major depressive disorders, quantitative EEG showed favorable changes in left and right prefrontal cortex [J]. Psychiatry Res, 2017, 251: 137-141.
|
21 |
Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex [J]. Behav Brain Res, 2009, 2, 201(2): 239-243.
|
22 |
Womelsdorf T, Vinck M, Leung LS, et al. Selective theta-synchronization of choice-relevant information subserves goal-directed behavior [J]. Front Hum Neurosci, 2010, 4: 210.
|
23 |
Debener S, Beauducel A, Nessler D, et al. Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients [J]. Neuropsychobiology, 2000, 41(1): 31-37.
|
24 |
Knott V, Mahoney C, Kennedy S, et al. EEG power, frequency, asymmetry and coherence in male depression [J]. Psychiatry Res, 2001, 106(2): 123-140.
|
25 |
Pizzagalli DA, Sherwood RJ, Henriques JB, et al. Frontal brain asymmetry and reward responsiveness: a source-localization study [J]. Psychol Sci, 2005, 16(10): 805-813.
|
26 |
Segrave RA, Thomson RH, Cooper NR, et al. Upper alpha activity during working memory processing reflects abnormal inhibition in major depression [J]. J Affect Disord, 2010, 127(1-3): 191-198.
|
27 |
Kemp AH, Griffiths K, Felmingham KL, et al. Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder [J]. Biol Psychol, 2010, 85(2): 350-354.
|
28 |
Fingelkurts AA, Fingelkurts AA, Rytsälä H, et al. Composition of brain oscillations in ongoing EEG during major depression disorder [J]. Neurosci Res, 2006, 56(2): 133-144.
|
29 |
Stewart JL, Bismark AW, Towers DN, et al. Resting frontal EEG asymmetry as an endophenotype for depression risk: sex-specific patterns of frontal brain asymmetry [J]. J Abnorm Psychol, 2010, 119(3): 502-512.
|
30 |
Kentgen LM, Tenke CE, Pine DS, et al. Electroencephalographic asymmetries in adolescents with major depression: influence of comorbidity with anxiety disorders [J]. J Abnorm Psychol, 2000, 109(4): 797-802.
|
31 |
Bruder GE, Tenke CE, Warner V, et al. Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders [J]. Biol Psychiatry, 2005, 57(4): 328-335.
|
32 |
Bruder GE, Tenke CE, Warner V, et al. Grandchildren at high and low risk for depression differ in EEG measures of regional brain asymmetry [J]. Biological Psychiatry, 2007, 62(11): 1317-1323.
|
33 |
Tomarken AJ, Dichter GS, Garber J, et al. Resting frontal brain activity: linkages to maternal depression and socio-economic status among adolescents [J]. Biol Psychol, 2004, 67(1-2): 77-102.
|
34 |
MacLean MH, Arnell KM, Cote KA. Resting EEG in alpha and beta bands predicts individual differences in attentional blink magnitude [J]. Brain Cogn, 2012, 78(3): 218-229.
|
35 |
Olbrich S, Arns M. EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response [J]. Int Rev Psychiatry, 2013, 25(5): 604-618.
|
36 |
Jaworska N, Blier P, Fusee W, et al. α Power, α asymmetry and anterior cingulate cortex activity in depressed males and females [J]. J Psychiatr Res. 2012, 46(11): 1483-1491.
|
37 |
Li Y, Kang C, Wei Z, et al. Beta oscillations in major depression-signalling a new cortical circuit for central executive function [J]. Sci Rep. 2017 Dec 21; 7(1):18021.
|
38 |
Gola M, Magnuski M, Szumska I, et al. EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects [J]. Int J Psychophysiol, 2013, 89(3): 334-341.
|
39 |
O'Neill GC, Barratt EL, Hunt BA, et al. Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods [J]. Phys Med Biol, 2015, 60(21): R271-295.
|
40 |
Brookes MJ, Woolrich MW, Barnes GR. Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage [J]. Neuroimage, 2012, 63(2): 910-920.
|
41 |
Siems M, Pape AA, Hipp JF, et al. Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG [J]. Neuroimage, 2016, 129: 345-355.
|
42 |
Arikan MK, Gunver MG, Tarhan N, Metin B. High-Gamma: A biological marker for suicide attempt in patients with depression [J]. J Affect Disord, 2019, 254: 1-6.
|
43 |
Strelets VB, Garakh ZhV, Novototskii-Vlasov VY. Comparative study of the gamma rhythm in normal conditions, during examination stress, and in patients with first depressive episode [J]. Neurosci Behav Physiol, 2007, 37(4): 387-394.
|
44 |
Arikan MK, Metin B, Tarhan N. EEG gamma synchronization is associated with response to paroxetine treatment [J]. J Affect Disord, 2018, 235: 114-116.
|
45 |
Lee TW, Wu YT, Yu YW, et al. The implication of functional connectivity strength in predicting treatment response of major depressive disorder: a resting EEG study [J]. Psychiatry Res, 2011, 194(3): 372-377.
|
46 |
Beck AT. The evolution of the cognitive model of depression and its neurobiological correlates [J]. Am J Psychiatry, 2008, 165(8): 969-977.
|
47 |
Demaree HA, Everhart DE, Youngstrom EA, et al. Brain lateralization of emotional processing: historical roots and a future incorporating "dominance" [J]. Behav Cogn Neurosci Rev, 2005, 4(1): 3-20.
|
48 |
Fingelkurts AA, Fingelkurts AA. Three-dimensional components of selfhood in treatment-naive patients with major depressive disorder: A resting-state qEEG imaging study [J]. Neuropsychologia, 2017, 99: 30-36.
|
49 |
Herrera-Guzmán I, Gudayol-Ferré E, Herrera-Abarca JE, et al. Major depressive disorder in recovery and neuropsychological functioning: effects of selective serotonin reuptake inhibitor and dual inhibitor depression treatments on residual cognitive deficits in patients with major depressive disorder in recovery [J]. J Affect Disord, 2010, 123(1-3): 341-350.
|
50 |
Schulman JJ, Cancro R, Lowe S, et al. Imaging of thalamocortical dysrhythmia in neuropsychiatry [J]. Front Hum Neurosci, 2011, 5: 69.
|
51 |
Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations [J]. Neurosci Biobehav Rev, 2007, 31(3): 377-395.
|
52 |
Schyns PG, Thut G, Gross J. Cracking the code of oscillatory activity [J]. PLoS Biol, 2011, 9(5): e1001064.
|
53 |
Epstein J, Perez DL, Ervin K, et al. Failure to segregate emotional processing from cognitive and sensorimotor processing in major depression [J]. Psychiatry Res, 2011, 193(3): 144-150.
|
54 |
Mu Y, Han S. Neural oscillations involved in self-referential processing [J]. Neuroimage, 2010, 53(2): 757-768.
|
55 |
Crespo-Garcia M, Cantero JL, Pomyalov A, et al. Functional neural networks underlying semantic encoding of associative memories [J]. Neuroimage, 2010, 50(3): 1258-1270.
|
56 |
Kudina TA, Sudnitsyn VV, Kutyreva EV, et al. The serotonin reuptake inhibitor fluoxetine suppresses theta oscillations in the electroencephalogram of the rabbit hippocampus [J]. Neurosci Behav Physiol, 2004, 34(9): 929-933.
|
57 |
Engel AK, Fries P. Beta-band oscillations--signalling the status quo? [J]. Curr Opin Neurobiol, 2010, 20(2): 156-165.
|
58 |
Sauseng P, Klimesch W, Freunberger R, et al. Relevance of EEG alpha and theta oscillations during task switching [J]. Exp Brain Res, 2006, 170(3): 295-301.
|
59 |
Roh SC, Park EJ, Shim M, et al. EEG beta and low gamma power correlates with inattention in patients with major depressive disorder [J]. J Affect Disord, 2016, 204: 124-130.
|
60 |
Egner T, Gruzelier JH. EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials [J]. Clin Neurophysiol, 2004, 115(1): 131-139.
|
61 |
Herrmann CS, Fründ I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models [J]. Neurosci Biobehav Rev, 2010, 34(7): 981-992.
|
62 |
Howard MW, Rizzuto DS, Caplan JB, et al. Gamma oscillations correlate with working memory load in humans [J]. Cereb Cortex, 2003, 13(12): 1369-1374.
|
63 |
Velasques B, Machado S, Portella CE, et al. Electrophysiological analysis of a sensorimotor integration task [J]. Neurosci Lett, 2007, 426(3): 155-159.
|
64 |
Palva S, Palva JM. Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs [J]. Trends Cogn Sci, 2012, 16(4): 219-230.
|
65 |
Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG [J]. Hum Brain Mapp, 2009, 30(6): 1857-1865.
|
66 |
He B, Astolfi L, Valdes-Sosa PA, et al. Electrophysiological brain connectivity: theory and implementation [J]. IEEE Trans Biomed Eng, 2019, 10: 1109.
|
67 |
Brunner C, Billinger M, Seeber M, et al. Volume conduction influences scalp-based connectivity estimates [J]. Front Comput Neurosci, 2016, 10:121.
|