| 1 |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) [J]. Jama, 2016, 315(8): 801-810.
|
| 2 |
Beesley SJ, Weber G, Sarge T, et al. Septic cardiomyopathy [J]. Crit Care Med, 2018, 46(4): 625-634.
|
| 3 |
Hasegawa D, Ishisaka Y, Maeda T, et al. Prevalence and prognosis of sepsis-induced cardiomyopathy: a systematic review and meta-analysis [J]. J Intensive Care Med, 2023, 38(9): 797-808.
|
| 4 |
Chen L, Tian Q, Shi Z, et al. Melatonin alleviates cardiac function in sepsis-caused myocarditis via maintenance of mitochondrial function [J]. Front Nutr, 2021, 8: 754235.
|
| 5 |
Hanumanthu BKJ, Nair AS, Katamreddy A, et al. Sepsis-induced cardiomyopathy is associated with higher mortality rates in patients with sepsis [J]. Acute Crit Care, 2021, 36(3): 215-222.
|
| 6 |
Habimana R, Choi I, Cho HJ, et al. Sepsis-induced cardiac dysfunction: a review of pathophysiology [J]. Acute Crit Care, 2020, 35(2): 57-66.
|
| 7 |
Ouyang M, Ouyang X, Peng Z, et al. Heart-targeted amelioration of sepsis-induced myocardial dysfunction by microenvironment responsive nitric oxide nanogenerators in situ [J]. J Nanobiotechnology, 2022, 20(1): 263.
|
| 8 |
Su Z, Gao M, Weng L, et al. Esculin targets TLR4 to protect against LPS-induced septic cardiomyopathy [J]. Int Immunopharmacol, 2024, 131: 111897.
|
| 9 |
Antonucci E, Fiaccadori E, Donadello K, et al. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment [J]. J Crit Care, 2014, 29(4): 500-511.
|
| 10 |
Chen YH, Teng X, Hu ZJ, et al. Hydrogen sulfide attenuated sepsis-induced myocardial dysfunction through TLR4 pathway and endoplasmic reticulum stress [J]. Front Physiol, 2021, 12: 653601.
|
| 11 |
Zhang G, Dong D, Wan X, et al. Cardiomyocyte death in sepsis: mechanisms and regulation (Review) [J]. Mol Med Rep, 2022, 26(2): 257.
|
| 12 |
Nössing C, Ryan KM. 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics' [J]. Br J Cancer, 2023, 128(3): 426-431.
|
| 13 |
Zechendorf E, O'Riordan CE, Stiehler L, et al. Ribonuclease 1 attenuates septic cardiomyopathy and cardiac apoptosis in a murine model of polymicrobial sepsis [J]. JCI Insight, 2020, 5(8): e131571.
|
| 14 |
Kuroshima T, Kawaguchi S, Okada M. Current perspectives of mitochondria in sepsis-induced cardiomyopathy [J]. Int J Mol Sci, 2024, 25(9): 4710.
|
| 15 |
Preau S, Delguste F, Yu Y, et al. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy [J]. Antioxid Redox Signal, 2016, 24(10): 529-542.
|
| 16 |
Ye H, Hu H, Zhou X, et al. Targeting ferroptosis in the maintenance of mitochondrial homeostasis in the realm of septic cardiomyopathy [J]. Curr Opin Pharmacol, 2024, 74: 102430.
|
| 17 |
Xl L, Gy Z, R G, N C. Ferroptosis in sepsis: the mechanism, the role and the therapeutic potential. Front Immunol. 2022 Aug 5: 13: 956361.
|
| 18 |
Han X, Zhang J, Liu J, et al. Targeting ferroptosis: a novel insight against myocardial infarction and ischemia-reperfusion injuries [J]. Apoptosis, 2023, 28(1-2): 108-123.
|
| 19 |
Fefelova N, Wongjaikam S, Pamarthi SH, et al. Deficiency of mitochondrial calcium uniporter abrogates iron overload-induced cardiac dysfunction by reducing ferroptosis [J]. Basic Res Cardiol, 2023, 118(1): 21.
|
| 20 |
Zhu XX, Meng XY, Zhang AY, et al. Vaccarin alleviates septic cardiomyopathy by potentiating NLRP3 palmitoylation and inactivation [J]. Phytomedicine, 2024, 131: 155771.
|
| 21 |
Yang Z, Pan X, Wu X, et al. TREM-1 induces pyroptosis in cardiomyocytes by activating NLRP3 inflammasome through the SMC4/NEMO pathway [J]. FEBS J, 2023, 290(6): 1549-1562.
|
| 22 |
Liu B, Wang Z, He R, et al. Buformin alleviates sepsis-induced acute lung injury via inhibiting NLRP3-mediated pyroptosis through an AMPK-dependent pathway [J]. Clin Sci (Lond), 2022, 136(4): 273-289.
|
| 23 |
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation [J]. Nature, 2015, 517(7534): 311-320.
|
| 24 |
Yu S, Yang H, Guo X, et al. Klotho attenuates angiotensin II‑induced cardiotoxicity through suppression of necroptosis and oxidative stress [J]. Mol Med Rep, 2021, 23(1): 66.
|
| 25 |
Du Y, Zhong Y, Ding R, et al. New insights of necroptosis and immune infiltration in sepsis-induced myocardial dysfunction from bioinformatics analysis through RNA-seq in mice [J]. Front Cell Infect Microbiol, 2022, 12: 1068324.
|
| 26 |
Lin H, Wang W, Lee M, et al. Current status of septic cardiomyopathy: basic science and clinical progress [J]. Front Pharmacol, 2020, 11: 210.
|
| 27 |
Chen M, Guan Y, Li A, et al. LncRNA Sox2ot mediates mitochondrial dysfunction in septic cardiomyopathy [J]. DNA Cell Biol, 2019, 38(11): 1197-1206.
|
| 28 |
Lo Verso F, Carnio S, Vainshtein A, et al. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity [J]. Autophagy, 2014, 10(11): 1883-1894.
|
| 29 |
Ott M, Gogvadze V, Orrenius S, et al. Mitochondria, oxidative stress and cell death [J]. Apoptosis, 2007, 12(5): 913-922.
|
| 30 |
Wen Y, Liu Y, Liu W, et al. Research progress on the activation mechanism of NLRP3 inflammasome in septic cardiomyopathy [J]. Immun Inflamm Dis, 2023, 11(10): e1039.
|
| 31 |
Power AS, Asamudo EU, Worthington LPI, et al. Nitric oxide modulates Ca2+ leak and arrhythmias via S-nitrosylation of CaMKII [J]. Circ Res, 2023, 133(12): 1040-1055.
|
| 32 |
Martin L, Derwall M, Al Zoubi S, et al. The septic heart: current understanding of molecular mechanisms and clinical implications [J]. Chest, 2019, 155(2): 427-437.
|
| 33 |
Preiser JC, Zhang H, Vray B, et al. Time course of inducible nitric oxide synthase activity following endotoxin administration in dogs [J]. Nitric Oxide, 2001, 5(2): 208-211.
|
| 34 |
Salami OM, Habimana O, Peng JF, et al. Therapeutic strategies targeting mitochondrial dysfunction in sepsis-induced cardiomyopathy [J]. Cardiovasc Drugs Ther, 2024, 38(1): 163-180.
|
| 35 |
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 [J]. Intensive Care Med, 2021, 47(11): 1181-1247.
|
| 36 |
中国中西医结合学会重症医学专业委员会, 中国医师协会中西医结合医师分会心脏介入专业委员会. 脓毒性心肌病中西医结合诊治专家共识 [J]. 中国中西医结合急救杂志, 2022, 29(1): 1-6.
|
| 37 |
Bosch NA, Cohen DM, Walkey AJ. Risk factors for new-onset atrial fibrillation in patients with sepsis: a systematic review and meta-analysis [J]. Crit Care Med, 2019, 47(2): 280-287.
|
| 38 |
Cai F, Li D, Xie Y, et al. Sulfide: quinone oxidoreductase alleviates ferroptosis in acute kidney injury via ameliorating mitochondrial dysfunction of renal tubular epithelial cells [J]. Redox Biol, 2024, 69: 102973.
|
| 39 |
Maeder M, Fehr T, Rickli H, et al. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides [J]. Chest, 2006, 129(5): 1349-1366.
|
| 40 |
L'Heureux M, Sternberg M, Brath L, et al. Sepsis-induced cardiomyopathy: a comprehensive review [J]. Curr Cardiol Rep, 2020, 22(5): 35.
|
| 41 |
Manetti AC, Maiese A, Paolo MD, et al. MicroRNAs and sepsis-Iinduced cardiac dysfunction: a systematic review [J]. Int J Mol Sci, 2020, 22(1): 321.
|
| 42 |
Zhang P, Yi L, Qu S, et al. The biomarker TCONS_00016233 drives septic AKI by targeting the miR-22-3p/AIFM1 signaling axis [J]. Mol Ther Nucleic Acids, 2020, 19: 1027-1042.
|
| 43 |
Wang J, Ma X, Si X, et al. Sweroside functionalized with Mesenchymal Stem cells derived exosomes attenuates sepsis-induced myocardial injury by modulating oxidative stress and apoptosis in rats [J]. J Biomater Appl, 2023, 38(3): 381-391.
|
| 44 |
张斌, 陈磊, 季镇新, 等. 脓毒症心肌病患者外周血内皮细胞来源细胞外囊泡的表达及意义 [J]. 实用临床医药杂志, 2025, 29(5): 112-116, 121.
|
| 45 |
Guo H, Tang L, Xu J, et al. MicroRNA-495 serves as a diagnostic biomarker in patients with sepsis and regulates sepsis-induced inflammation and cardiac dysfunction [J]. Eur J Med Res, 2019, 24(1): 37.
|
| 46 |
Halkein J, Tabruyn SP, Ricke-Hoch M, et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy [J]. J Clin Invest, 2013, 123(5): 2143-2154.
|
| 47 |
Muehlberg F, Blaszczyk E, Will K, et al. Characterization of critically ill patients with septic shock and sepsis-associated cardiomyopathy using cardiovascular MRI [J]. ESC Heart Fail, 2022, 9(4): 2147-2156.
|
| 48 |
Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock [J]. Ann Intern Med, 1984, 100(4): 483-490.
|
| 49 |
Lu NF, Niu HX, Liu AQ, et al. Types of septic cardiomyopathy: prognosis and influencing factors - a clinical study [J]. Risk Manag Healthc Policy, 2024, 17: 1015-1025.
|
| 50 |
Huang SJ, Ting I, Huang AM, et al. Longitudinal wall fractional shortening: an M-mode index based on mitral annular plane systolic excursion (MAPSE) that correlates and predicts left ventricular longitudinal strain (LVLS) in intensive care patients [J]. Crit Care, 2017, 21(1): 292.
|
| 51 |
Carbone F, Liberale L, Preda A, et al. Septic cardiomyopathy: from pathophysiology to the clinical setting [J]. Cells, 2022, 11(18): 2833.
|
| 52 |
林欢, 任宏生. 超声心动图在脓毒症心肌病中的应用进展 [J]. 中国临床研究, 2024, 37(11): 1665-1668, 1673.
|
| 53 |
Velagapudi VM, Pidikiti R, Tighe DA. Is Left ventricular global longitudinal strain by two-dimensional speckle tracking echocardiography in sepsis cardiomyopathy ready for prime time use in the ICU? [J]. Healthcare (Basel), 2019, 7(1): 5.
|
| 54 |
Tsolaki V, Zakynthinos GE, Papanikolaou J, et al. Levosimendan in the treatment of patients with severe septic cardiomyopathy [J]. Life (Basel), 2023, 13(6): 1346.
|
| 55 |
Ge Z, Gao Y, Lu X, et al. The association between levosimendan and mortality in patients with sepsis or septic shock: a systematic review and meta-analysis [J]. Eur J Emerg Med, 2024, 31(2): 90-97.
|
| 56 |
Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021: Erratum [J]. Crit Care Med, 2022, 50(4): e413-e414.
|
| 57 |
Kawaguchi S, Okada M, Ijiri E, et al. β3-Adrenergic receptor blockade reduces mortality in endotoxin-induced heart failure by suppressing induced nitric oxide synthase and saving cardiac metabolism [J]. Am J Physiol Heart Circ Physiol, 2020, 318(2): H283-H294.
|
| 58 |
Wu BB, Leung KT, Poon EN. Mitochondrial-targeted therapy for doxorubicin-induced cardiotoxicity [J]. Int J Mol Sci, 2022, 23(3): 1912.
|
| 59 |
Wu M, Li G, Wang W, et al. Emerging roles of microRNAs in septic cardiomyopathy [J]. Front Pharmacol, 2023, 14: 1181372.
|
| 60 |
Li J, Xiao F, Lin B, et al. Ferrostatin-1 improves acute sepsis-induced cardiomyopathy via inhibiting neutrophil infiltration through impaired chemokine axis [J]. Front Cell Dev Biol, 2024, 12: 1510232.
|
| 61 |
Bréchot N, Hajage D, Kimmoun A, et al. Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: a retrospective, multicentre, international cohort study [J]. Lancet, 2020, 396(10250): 545-552.
|
| 62 |
Falk L, Hultman J, Broman LM. Extracorporeal membrane oxygenation for septic shock [J]. Crit Care Med, 2019, 47(8): 1097-1105.
|
| 63 |
Kuroki T, Abe T, Kawana R, et al. Successful treatment of sepsis-induced cardiomyopathy with intra-aortic balloon pumping: a case report and literature review [J]. Am J Case Rep, 2023, 24: e941098.
|