1 |
Mann RM, Balleyguier C, Baltzer PA, et al. Breast MRI: EUSOBI recommendations for women's information [J]. Eur Radiol, 2015, 25(12): 3669-3678.
|
2 |
Sardanelli F, Boetes C, Borisch B, et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group [J]. Eur J Cancer, 2010, 46(8): 1296-1316.
|
3 |
Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment [J]. Lancet, 2011, 378(9805): 1804-1811.
|
4 |
Leithner D, Wengert GJ, Helbich TH, et al. Clinical role of breast MRI now and going forward [J]. Clinical Radiology, 2018, 73(8): 700-714.
|
5 |
Mann RM, Cho N, Moy L. Breast MRI: state of the art [J]. Radiology, 2019, 292(3): 520-536.
|
6 |
Yeh ED, Georgian-Smith D, Raza S, et al. Positioning in breast MR imaging to optimize image quality [J]. Radiographics, 2014, 34(1): E1-E17.
|
7 |
Pinker K, Bogner W, Baltzer P, et al. Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging [J]. Invest Radiol, 2014, 49(6): 421-430.
|
8 |
Marino MA, Helbich T, Baltzer P, et al. Multiparametric MRI of the breast: A review [J]. J Magn Reson Imaging, 2018, 47(2): 301-315.
|
9 |
Westra C, Dialani V, Mehta TS, et al. Using T2-weighted sequences to more accurately characterize breast masses seen on MRI [J]. AJR Am J Roentgenol, 2014, 202(3): W183-W190.
|
10 |
Cheon H, Kim H J, Kim TH, et al. Invasive breast cancer: prognostic value of peritumoral edema identified at preoperative MR imaging [J]. Radiology, 2018, 287(1): 68-75.
|
11 |
Arponen O, Masarwah A, Sutela A, et al. Incidentally detected enhancing lesions found in breast MRI: analysis of apparent diffusion coefficient and T2 signal intensity significantly improves specificity [J]. Eur Radiol, 2016, 26(12): 4361-4370.
|
12 |
Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?[J]. Radiology, 1999, 211(1): 101-110.
|
13 |
Liu F, Kornecki A, Shmuilovich O, et al. Optimization of time-to-peak analysis for differentiating malignant and benign breast lesions with dynamic contrast-enhanced MRI [J]. Acad Radiol, 2011, 18(6): 694-704.
|
14 |
Kim JY, Kim SH, Kim YJ, et al. Enhancement parameters on dynamic contrast enhanced breast MRI: do they correlate with prognostic factors and subtypes of breast cancers?[J]. Magn Reson Imaging, 2015, 33(1): 72-80.
|
15 |
American College of Radiology. BI-RADS Atlas [M]. Reston: American College of Radiology, 2013.
|
16 |
Partridge SC, Nissan N, Rahbar H, et al. Diffusion-weighted breast MRI: Clinical applications and emerging techniques [J]. J Magn Reson Imaging, 2017, 45(2): 337-355.
|
17 |
Shi RY, Yao QY, Wu LM, et al. Breast lesions: diagnosis using diffusion weighted imaging at 1.5T and 3.0T-systematic review and Meta-analysis [J]. Clin Breast Cancer, 2018, 18(3): e305-e320.
|
18 |
Lee JM, Abraham L, Lam DL, et al. Cumulative risk distribution for interval invasive second breast cancers after negative surveillance mammography [J]. J Clin Oncol, 2018, 36(20): 2070-2077.
|
19 |
Morrogh M, Morris EA, Liberman L, et al. MRI identifies otherwise occult disease in select patients with Paget disease of the nipple [J]. J Am Coll Surg, 2008, 206(2): 316-321.
|
20 |
Kuhl CK, Strobel K, Bieling H, et al. Impact of preoperative breast MR Imaging and mr-guided surgery on diagnosis and surgical outcome of women with invasive breast cancer with and without DCIS component [J]. Radiology, 2017, 284(3): 645-655.
|
21 |
Lee CI, Chen LE, Elmore JG. Risk-based breast cancer screening: implications of breast density [J]. Med Clin North Am, 2017, 101(4): 725-741.
|
22 |
Thomassin-Naggara I, Siles P, Trop I, et al. How to measure breast cancer tumoral size at MR imaging [J]. Eur J Radiol, 2013, 82(12): e790-e800.
|
23 |
Romeo V, Picariello V, Pignata A, et al. Influence of different post-contrast time points on dynamic contrast-enhanced (DCE) MRI T staging in breast cancer [J]. Eur J Radiol, 2020, 124: 108819.
|
24 |
Choi WJ, Cha JH, Kim HH, et al. The accuracy of breast MR imaging for measuring the size of a breast cancer: analysis of the histopathologic factors [J]. Clin Breast Cancer, 2016, 16(6): e145-e152.
|
25 |
Plana MN, Carreira C, Muriel A, et al. Magnetic resonance imaging in the preoperative assessment of patients with primary breast cancer: systematic review of diagnostic accuracy and meta-analysis [J]. Eur Radiol, 2012, 22(1): 26-38.
|
26 |
Ecanow JS, Abe H, Newstead GM, et al. Axillary staging of breast cancer: what the radiologist should know [J]. Radio Graphics, 2013, 33(6): 1589-1612.
|
27 |
Hyun SJ, Kim EK, Moon HJ, et al. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?[J]. Eur Radiol, 2016, 26(11): 3865-3873.
|
28 |
van Nijnatten TJA, Ploumen EH, Schipper RJ, et al. Routine use of standard breast MRI compared to axillary ultrasound for differentiating between no, limited and advanced axillary nodal disease in newly diagnosed breast cancer patients [J]. Eur J Radiol, 2016, 85(12): 2288-2294.
|
29 |
Han L, Zhu Y, Liu Z, et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer [J]. Eur Radiol, 2019, 29(7): 3820-3829.
|
30 |
Ha R, Chang P, Karcich J, et al. Axillary lymph node evaluation utilizing convolutional neural networks using MRI dataset [J]. J Digit Imaging, 2018, 31(6): 851-856.
|
31 |
King TA, Morrow M. Surgical issues in patients with breast cancer receiving neoadjuvant chemotherapy [J]. Nat Rev Clin Oncol, 2015, 12(6): 335-343.
|
32 |
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J]. Lancet, 2014, 384(9938): 164-172.
|
33 |
Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) [J]. Eur J Cancer, 2009, 45(2): 228-247.
|
34 |
Scheel JR, Kim E, Partridge SC, et al. MRI, clinical examination, and mammography for preoperative assessment of residual disease and pathologic complete response after neoadjuvant chemotherapy for breast cancer: ACRIN 6657 Trial [J]. AJR Am J Roentgenol, 2018, 210(6): 1376-1385.
|
35 |
Padhani AR, Hayes C, Assersohn L, et al. Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results [J]. Radiology, 2006, 239(2): 361-374.
|
36 |
McLaughlin R, Hylton N. MRI in breast cancer therapy monitoring [J]. NMR Biomed, 2011, 24(6): 712-720.
|
37 |
Kim Y, Kim SH, Song BJ, et al. Early prediction of response to neoadjuvant chemotherapy using dynamic contrast-enhanced MRI and ultrasound in breast cancer [J]. Korean J Radiol, 2018, 19(4): 682-691.
|
38 |
Dogan BE, Yuan Q, Bassett R, et al. Comparing the performances of magnetic resonance imaging size vs pharmacokinetic parameters to predict response to neoadjuvant chemotherapy and survival in patients with breast cancer [J]. Curr Probl Diagn Radiol, 2019, 48(3): 235-240.
|
39 |
Partridge SC, Zhang Z, Newitt DC, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: The ACRIN 6698 Multicenter Trial [J]. Radiology, 2018, 289(3): 618-627.
|
40 |
Comstock CE, Gatsonis C, Newstead GM, et al. Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening [J]. JAMA, 2020, 323(8): 746-756.
|
41 |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data [J]. Radiology, 2016, 278(2): 563-577.
|
42 |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
|
43 |
Valdora F, Houssami N, Rossi F, et al. Rapid review: radiomics and breast cancer [J]. Breast Cancer Res Treat, 2018, 169(2): 217-229.
|
44 |
Parekh VS, Jacobs MA. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI [J]. NPJ Breast Cancer, 2017, 3(1): 43-49.
|
45 |
Li H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set [J]. NPJ Breast Cancer, 2016, 2(1): 16012.
|
46 |
Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J]. European Radiology, 2019, 29(3): 1211-1220.
|
47 |
Pinker K, Bogner W, Baltzer P, et al. Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T [J]. Eur Radiol, 2014, 24(4): 913-920.
|
48 |
Gruber S, Pinker K, Zaric O, et al. Dynamic contrast-enhanced magnetic resonance imaging of breast tumors at 3 and 7 T: a comparison [J]. Invest Radiol, 2014, 49(5): 354-362.
|
49 |
Ma D, Lu F, Zou X, et al. Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions [J]. Magn Reson Imaging, 2017, 36: 175-179.
|
50 |
Kim Y, Ko K, Kim D, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes [J]. Br J Radiol, 2016, 89(1063): 20160140.
|
51 |
Sun K, Chen X, Chai W, et al. Breast cancer: Diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors [J]. Radiology, 2015, 277(1): 46-55.
|
52 |
Zaric O, Pinker K, Zbyn S, et al. Quantitative sodium MR imaging at 7 T: Initial results and comparison with diffusion-weighted imaging in patients with breast tUMORS [J]. Radiology, 2016, 280(1): 39-48.
|
53 |
Zhang S, Seiler S, Wang X, et al. CEST-Dixon for human breast lesion characterization at 3 T: A preliminary study [J]. Magn Reson Med, 2018, 80(3): 895-903.
|