1 |
Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview [J]. Molecules, 2020, 25(11): 2699.
|
2 |
Yaqoob AA, Ahmad H, Parveen T, et al. Recent advances in metal decorated nanomaterials and their various biological applications: a review [J]. Front Chem, 2020, 8: 341.
|
3 |
Wang SF, Shen L, Zhang WD, et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites [J]. Biomacromolecules, 2005, 6(6): 3067-3072.
|
4 |
Morin-Crini N, Lichtfouse E, Torri G, et al. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry [J]. Environ Chem Lett, 2019, 17(4): 1667-1692.
|
5 |
Fraczek A, Menaszek E, Paluszkiewicz C, et al. Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes [J]. Acta Biomater, 2008, 4(6): 1593-1602.
|
6 |
Najeeb CK, Chang J, Lee JH, et al. Preparation of semiconductor-enriched single-walled carbon nanotube dispersion using a neutral ph water soluble chitosan derivative [J]. J Colloid Interface Sci, 2011, 354(2): 461-466.
|
7 |
Singh RP, Sharma G, Sonali , et al. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery [J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 446-458.
|
8 |
Nivethaa EK, Dhanavel S, Narayanan V, et al. Fabrication of chitosan/MWCNT nanocomposite as a carrier for 5-fluorouracil and a study of the cytotoxicity of 5-fluorouracil encapsulated nanocomposite towards mcf-7 [J]. Polymer Bulletin, 2016, 73(11): 3221-3236.
|
9 |
屈凌波, 平亚红, 李璐珩, 等. 功能性碳纳米管在食品与生物医学领域的应用研究进展 [J]. 河南工业大学学报 (自然科学版), 2019, 40(1): 113-119.
|
10 |
Fonseca-Santos B, Chorilli M. An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems [J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1349-1362.
|
11 |
Prajatelistia E, Lim C, Oh DX, et al. Chitosan and hydroxyapatite composite cross-linked by dopamine has improved anisotropic hydroxyapatite growth and wet mechanical properties [J]. Eng Life Sci, 2015, 15(2): 254-261.
|
12 |
Ways MT, Lau WM, Khutoryanskiy VV. Chitosan and its derivatives for application in mucoadhesive drug delivery systems [J]. Polymers (Basel), 2018, 10(3): 267.
|
13 |
Zhao D, Yu S, Sun B, et al. Biomedical applications of chitosan and its derivative nanoparticles [J]. Polymers (Basel), 2018, 10(4): 462.
|
14 |
刘乐浩, 赵廷凯, 刘和光, 等. 碳纳米管/壳聚糖复合材料的研究进展 [J]. 炭素技术, 2012, 31(3): 31-35.
|
15 |
Tsai YC, Chen SY, Lee CA. Amperometric cholesterol biosensors based on carbon nanotube-chitosan-platinum-cholesterol oxidase nanobiocomposite [J]. Sens Actuators B Chem, 2008, 135(1): 96-101.
|
16 |
Pramanik A, Jones S, Gao Y, et al. A bio-conjugated chitosan wrapped cnt based 3d nanoporous architecture for separation and inactivation of rotavirus and shigella waterborne pathogens [J]. J Mater Chem B, 2017, 5(48): 9522-9531.
|
17 |
Kassem A, Ayoub GM, Malaeb L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review [J]. Sci Total Environ, 2019, 668: 566-576.
|
18 |
于慧. 碳纳米管/壳聚糖复合材料的制备以及抑菌性研究 [D]. 青岛: 中国海洋大学, 2013.
|
19 |
Engel M, Hadar Y, Belkin S, et al. Bacterial inactivation by a carbon nanotube-iron oxide nanocomposite: a mechanistic study using e. Coli mutants [J]. Environ Sci Nano, 2018, 5(2): 372-380.
|
20 |
Al-Jumaili A, Alancherry S, Bazaka K, et al. Review on the antimicrobial properties of carbon nanostructures [J]. Materials (Basel), 2017, 10(9): 1066.
|
21 |
Kang S, Pinault M, Pfefferle LD, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity [J]. Langmuir, 2007, 23(17): 8670-8673.
|
22 |
Kang S, Mauter MS, Elimelech M. Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent [J]. Environ Sci Technol, 2009, 43(7): 2648-2653.
|
23 |
Bai Y, Park IS, Lee SJ, et al. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent [J]. Carbon, 2011, 49(11): 3663-3671.
|
24 |
Akhavan O, Azimirad R, Safa S. Functionalized carbon nanotubes in zno thin films for photoinactivation of bacteria [J]. Mater Chem Phys, 2011, 130(1): 598-602.
|
25 |
Zardini HZ, Davarpanah M, Shanbedi M, et al. Microbial toxicity of ethanolamines-multiwalled carbon nanotubes [J]. J Biomed Mater Res A, 2014, 102(6): 1774-1781.
|
26 |
Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
|
27 |
欧国松. 改性碳纳米管/海藻酸钠复合纤维的制备及其性能研究 [D]. 杭州: 浙江理工大学, 2019.
|
28 |
Aryaei A, Jayatissa AH, Jayasuriya AC. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films [J]. J Biomed Mater Res A, 2014, 102(8): 2704-2712.
|
29 |
Aderibigbe BA, Naki T. Chitosan-based nanocarriers for nose to brain delivery [J]. Appl Sci, 2019, 9(11): 2219.
|
30 |
Umemura K, Izumi K, Oura S. Probe microscopic studies of DNA molecules on carbon nanotubes [J]. Nanomaterials (Basel), 2016, 6(10): 180.
|
31 |
Sanginario A, Miccoli B, Demarchi D. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment [J]. Biosensors (Basel), 2017, 7(1): 9.
|
32 |
Oser P, Düttmann O, Schmid F, et al. Synthesis and characterization of cnt composites for laser-generated ultrasonic waves [J]. Macromol Mater Eng, 2020, 305(4): 1900852.
|
33 |
Gleiter H, Hansen N, Horsewell A, et al. Nanostrucutured materials [C]. Proceedings of the Second Rise Intemational Symposium on Metallurgy and Materials Science Denmark Roskilde, 1981: 15-29.
|
34 |
Saha LC, Nag OK, Doughty A, et al. An immunologically modified nanosystem based on noncovalent binding between single-walled carbon nanotubes and glycated chitosan [J]. Technol Cancer Res Treat, 2018, 17: 1533033818802313.
|
35 |
Villa CH, Dao T, Ahearn I, et al. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance igg responses to tumor-associated antigens [J]. ACS Nano, 2011, 5(7): 5300-5311.
|
36 |
Gao Z, Varela JA, Groc L, et al. Toward the suppression of cellular toxicity from single-walled carbon nanotubes [J]. Biomater Sci, 2016, 4(2): 230-244.
|
37 |
Zhou F, Wu S, Song S, et al. Antitumor immunologically modified carbon nanotubes for photothermal therapy [J]. Biomaterials, 2012, 33(11): 3235-3242.
|
38 |
Zhou F, Song S, Chen WR, et al. Immunostimulatory properties of glycated chitosan [J]. J Xray Sci Technol, 2011, 19(2): 285-292.
|
39 |
Chen WR, Carubelli R, Liu H, et al. Laser immunotherapy: A novel treatment modality for metastatic tumors [J]. Mol Biotechnol, 2003, 25(1): 37-44.
|
40 |
Hozumi K, Nomizu M. Mixed peptide-conjugated chitosan matrices as multi-receptor targeted cell-adhesive scaffolds [J]. Int J Mol Sci, 2018, 19(9): 2713.
|
41 |
Mi FL, Shyu SS, Wu YB, et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing [J]. Biomaterials, 2001, 22(2): 165-173.
|
42 |
Biagini G, Bertani A, Muzzarelli R, et al. Wound management with n-carboxybutyl chitosan [J]. Biomaterials, 1991, 12(3): 281-286.
|
43 |
Kittana N, Abu-Rass H, Sabra R, et al. Topical aqueous extract of ephedra alata can improve wound healing in an animal model [J]. Chin J Traumatol, 2017, 20(2): 108-113.
|
44 |
Chen G, Wu Y, Yu D, et al. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis [J]. J Biomater Appl, 2019, 33(7): 989-996.
|
45 |
Zhao W, Yu W, Zheng J, et al. Effects of carbon nanotubes in a chitosan/collagen-based composite on mouse fibroblast cell proliferation [J]. Cell Mol Neurobiol, 2014, 34(1): 43-50.
|