8 |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010,464(7285): 59-65.
|
9 |
Shine EE, Crawford JM. Molecules from the microbiome [J]. Annu Rev Biochem, 2021,90: 789-815.
|
10 |
Evenepoel P, Poesen R, Meijers B. The gut-kidney axis [J]. Pediatr Nephrol, 2017,32(11): 2005-2014.
|
11 |
Han S, Chen M, Cheng P, et al. A systematic review and meta-analysis of gut microbiota in diabetic kidney disease: Comparisons with diabetes mellitus, non-diabetic kidney disease, and healthy individuals [J]. Front Endocrinol (Lausanne), 2022,13: 1018093.
|
12 |
Shang J, Cui W, Guo R, et al. The harmful intestinal microbial community accumulates during DKD exacerbation and microbiome-metabolome combined validation in a mouse model [J]. Front Endocrinol (Lausanne), 2022,13: 964389.
|
13 |
Cai K, Ma Y, Cai F, et al. Changes of gut microbiota in diabetic nephropathy and its effect on the progression of kidney injury [J]. Endocrine, 2022,76(2): 294-303.
|
14 |
Li Y, Qin GQ, Wang WY, et al. Short chain fatty acids for the risk of diabetic nephropathy in type 2 diabetes patients [J]. Acta Diabetol, 2022,59(7): 901-909.
|
15 |
Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood [J]. Gut, 1987,28(10): 1221-1227.
|
16 |
Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data [J]. mBio, 2014,5(2): e00889.
|
17 |
Boets E, Gomand SV, Deroover L, et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study [J]. J Physiol, 2017,595(2): 541-555.
|
18 |
Pryde SE, Duncan SH, Hold GL, et al. The microbiology of butyrate formation in the human colon [J]. FEMS Microbiol Lett, 2002,217(2): 133-139.
|
19 |
Yan M, Li X, Sun C, et al. Sodium butyrate attenuates AGEs-induced oxidative stress and inflammation by inhibiting autophagy and affecting cellular metabolism in THP-1 cells [J/OL]. Molecules (Basel, Switzerland), 2022,27(24): 8715.
|
20 |
Sun J, Wang Y, Cui W, et al. Role of epigenetic histone modifications in diabetic kidney disease involving renal fibrosis [J]. J Diabetes Res, 2017,2017: 7242384.
|
21 |
Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease [J]. Adv Immunol, 2014,121: 91-119.
|
22 |
Khan S, Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats [J]. Food Chem Toxicol, 2014,73: 127-139.
|
23 |
Dong W, Jia Y, Liu X, et al. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC [J]. J Endocrinol, 2017,232(1): 71-83.
|
24 |
Du Y, Tang G, Yuan W. Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG‑induced NRK‑52E cells [J]. Int J Mol Med, 2020,45(1): 210-222.
|
1 |
Boughton CK, Tripyla A, Hartnell S, et al. Publisher Correction: Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial [J/OL]. Nature Medicine, 2021,27(10): 1850-1850.
|
2 |
杨莉, 迟春花, 吕继成, 等. 中国糖尿病肾脏病基层管理指南 [J]. 中华全科医师杂志, 2023,22(2): 146-157.
|
3 |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes Atlas, 9th edition [J]. Diabetes Res Clin Pract, 2019,157: 107843.
|
4 |
Kawanami D, Matoba K, Utsunomiya K. Signaling pathways in diabetic nephropathy [J]. Histol Histopathol, 2016,31(10): 1059-1067.
|
5 |
Zhong C, Dai Z, Chai L, et al. The change of gut microbiota-derived short-chain fatty acids in diabetic kidney disease [J]. J Clin Lab Anal, 2021,35(12): e24062.
|
6 |
Zhang L, Wang Z, Zhang X, et al. Alterations of the gut microbiota in patients with diabetic nephropathy [J]. Microbiol Spectr, 2022,10(4): e0032422.
|
7 |
叶凯丽, 黄诗琴, 胡婷, 等. 丁酸盐对糖尿病肾病小鼠肾损伤的保护作用及机制 [J]. 温州医科大学学报, 2023,53(1): 42-48.
|
25 |
Miyamoto J, Hasegawa S, Kasubuchi M, et al. Nutritional signaling via free fatty acid receptors [J]. Int J Mol Sci, 2016,17(4): 450.
|
26 |
Cheng X, Zhou T, He Y, et al. The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease [J]. Front Microbiol, 2022,13: 961536.
|
27 |
Huang W, Man Y, Gao C, et al. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-κB signaling [J]. Oxid Med Cell Longev, 2020,2020: 4074832.
|
28 |
Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome [J]. Nat Commun, 2015,6: 6734.
|
29 |
Feng W, Wu Y, Chen G, et al. Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner [J]. Cell Physiol Biochem, 2018,47(4): 1617-1629.
|
30 |
Li YJ, Chen X, Kwan TK, et al. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A [J]. J Am Soc Nephrol, 2020,31(6): 1267-1281.
|
31 |
Ren H, Wang Q. Non-coding RNA and diabetic kidney disease [J]. DNA Cell Biol, 2021,40(4): 553-567.
|
32 |
Belcheva A. MicroRNAs at the epicenter of intestinal homeostasis [J]. Bioessays, 2017,39(3).
|
33 |
毛玉熠, 李格菲, 韩睿. microRNAs调控糖尿病肾病发展的研究进展 [J/OL]. 中华临床医师杂志(电子版), 2021,15(2): 133-138.
|
34 |
Du Y, Yang YT, Tang G, et al. Butyrate alleviates diabetic kidney disease by mediating the miR-7a-5p/P311/TGF-β1 pathway [J]. FASEB J, 2020,34(8): 10462-10475.
|
35 |
Zhang P, Sun Y, Peng R, et al. Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3 [J]. Cell Death Dis, 2019,10(7): 526.
|
36 |
Yang H, Zhang Z, Peng R, et al. RNA-Seq analysis reveals critical transcriptome changes caused by sodium butyrate in DN mouse models [J]. Biosci Rep, 2021,41(4): BSR20203005.
|
37 |
Lin TA, Wu VC, Wang CY. Autophagy in chronic kidney diseases [J]. Cells, 2019,8(1): 61.
|
38 |
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research [J/OL]. Cell, 2010,140(3): 313-326.
|
39 |
Lou D, Zhang X, Jiang C, et al. 3β,23-Dihydroxy-12-ene-28-ursolic acid isolated from cyclocarya paliurus alleviates NLRP3 inflammasome-mediated gout via PI3K-AKT-mTOR-dependent autophagy [J]. Evid Based Complement Alternat Med, 2022,2022: 5541232.
|
40 |
Ma X, Wang Q. Short-chain fatty acids attenuate renal fibrosis and enhance autophagy of renal tubular cells in diabetic mice through the HDAC2/ULK1 axis [J]. Endocrinol Metab (Seoul), 2022,37(3): 432-443.
|
41 |
Ruiz-Andres O, Sanchez-Niño MD, Cannata-Ortiz P, et al. Histone lysine crotonylation during acute kidney injury in mice [J]. Dis Model Mech, 2016,9(6): 633-645.
|
42 |
Chen Y, Sprung R, Tang Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones [J]. Mol Cell Proteomics, 2007,6(5): 812-819.
|
43 |
Luo W, Yu Y, Wang H, et al. Up-regulation of MMP-2 by histone H3K9 β-hydroxybutyrylation to antagonize glomerulosclerosis in diabetic rat [J]. Acta Diabetol, 2020,57(12): 1501-1509.
|
44 |
欧阳琳, 王燕飞, 侯粲. 组蛋白翻译后修饰在糖尿病肾病发病中的作用 [J]. 中华肾脏病杂志, 2015,31(7): 553-556.
|
45 |
Zhou T, Xu H, Cheng X, et al. Sodium butyrate attenuates diabetic kidney disease partially via histone butyrylation modification [J]. Mediators Inflamm, 2022,2022: 7643322.
|
46 |
Luo L, Luo J, Cai Y, et al. Inulin-type fructans change the gut microbiota and prevent the development of diabetic nephropathy [J]. Pharmacol Res, 2022,183: 106367.
|
47 |
Carvalho CM, Gross LA, de Azevedo MJ, et al. Dietary fiber intake (supplemental or dietary pattern rich in fiber) and diabetic kidney disease: A systematic review of clinical trials [J]. Nutrients, 2019,11(2): 347.
|
48 |
Ni Y, Zheng L, Nan S, et al. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota [J]. Acta Biochim Biophys Sin (Shanghai), 2022,54(10): 1406-1420.
|
49 |
Zhu H, Cao C, Wu Z, et al. casei Zhang slows the progression of acute and chronic kidney disease [J]. Cell Metab, 2021,33(10): 1926-1942.e8.
|
50 |
Yang J, Li Y, Wen Z, et al. Oscillospira - a candidate for the next-generation probiotics [J]. Gut Microbes, 2021,13(1): 1987783.
|
51 |
Zaky A, Glastras SJ, Wong MYW, et al. The role of the gut microbiome in diabetes and obesity-related kidney disease [J]. Int J Mol Sci, 2021,22(17): 9641.
|
52 |
Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition [J]. Cell Metab, 2017,26(4): 611-619.e6.
|
53 |
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome [J]. Gastroenterology, 2012,143(4): 913-6.e7.
|
54 |
Bastos RMC, Simplício-Filho A, Sávio-Silva C, et al. Fecal microbiota transplant in a pre-clinical model of type 2 diabetes mellitus, obesity and diabetic kidney disease [J]. Int J Mol Sci, 2022,23(7): 3842.
|
55 |
Hu ZB, Lu J, Chen PP, et al. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis [J]. Theranostics, 2020,10(6): 2803-2816.
|
56 |
Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes [J]. Diabetes, 2015,64(5): 1794-1803.
|
57 |
Han C, Zhang X, Pang G, et al. Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs [J]. Biomaterials, 2022,287: 121619.
|