切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (11) : 872 -876. doi: 10.3877/cma.j.issn.1674-0785.2020.11.004

所属专题: 乳腺疾病 文献

专家论坛

多参数MRI在乳腺癌诊疗中的应用及进展
姜原1, 秦乃姗1,()   
  1. 1. 100034 北京,北京大学第一医院医学影像科
  • 收稿日期:2020-08-14 出版日期:2020-11-15
  • 通信作者: 秦乃姗

Application and development of multiparametric MRI in diagnosis and treatment of breast cancer

Yuan Jiang1, Naishan Qin1,()   

  1. 1. Department of Radiology, Peking University First Hospital, Beijing 100034, China
  • Received:2020-08-14 Published:2020-11-15
  • Corresponding author: Naishan Qin
引用本文:

姜原, 秦乃姗. 多参数MRI在乳腺癌诊疗中的应用及进展[J/OL]. 中华临床医师杂志(电子版), 2020, 14(11): 872-876.

Yuan Jiang, Naishan Qin. Application and development of multiparametric MRI in diagnosis and treatment of breast cancer[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(11): 872-876.

多参数核磁共振成像(MRI)在乳腺癌诊疗过程中具有重要作用。随着乳腺MRI的不断发展,越来越多的功能学参数提供了更多定量指标,为乳腺癌筛查、诊断、疗效评估及预后提供更多信息。本文从乳腺MRI检查设备、检查序列、临床检查适应证及MRI的新技术、新进展等方面介绍多参数MRI在乳腺癌诊疗过程中的应用及进展。

Multiparametric magnetic resonance imaging (MRI) plays an important role in the diagnosis and treatment of breast cancer. With the development of breast MRI, more quantitative indicators from functional sequences have emerged to facilitate breast cancer screening, diagnosis, and evaluation of treatment and prognosis. This paper will review the requirements and protocol of multiparametric breast MRI, indications for clinical examination, and new promising innovations in breast MRI.

1
Mann RM, Balleyguier C, Baltzer PA, et al. Breast MRI: EUSOBI recommendations for women's information [J]. Eur Radiol, 2015, 25(12): 3669-3678.
2
Sardanelli F, Boetes C, Borisch B, et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group [J]. Eur J Cancer, 2010, 46(8): 1296-1316.
3
Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment [J]. Lancet, 2011, 378(9805): 1804-1811.
4
Leithner D, Wengert GJ, Helbich TH, et al. Clinical role of breast MRI now and going forward [J]. Clinical Radiology, 2018, 73(8): 700-714.
5
Mann RM, Cho N, Moy L. Breast MRI: state of the art [J]. Radiology, 2019, 292(3): 520-536.
6
Yeh ED, Georgian-Smith D, Raza S, et al. Positioning in breast MR imaging to optimize image quality [J]. Radiographics, 2014, 34(1): E1-E17.
7
Pinker K, Bogner W, Baltzer P, et al. Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging [J]. Invest Radiol, 2014, 49(6): 421-430.
8
Marino MA, Helbich T, Baltzer P, et al. Multiparametric MRI of the breast: A review [J]. J Magn Reson Imaging, 2018, 47(2): 301-315.
9
Westra C, Dialani V, Mehta TS, et al. Using T2-weighted sequences to more accurately characterize breast masses seen on MRI [J]. AJR Am J Roentgenol, 2014, 202(3): W183-W190.
10
Cheon H, Kim H J, Kim TH, et al. Invasive breast cancer: prognostic value of peritumoral edema identified at preoperative MR imaging [J]. Radiology, 2018, 287(1): 68-75.
11
Arponen O, Masarwah A, Sutela A, et al. Incidentally detected enhancing lesions found in breast MRI: analysis of apparent diffusion coefficient and T2 signal intensity significantly improves specificity [J]. Eur Radiol, 2016, 26(12): 4361-4370.
12
Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?[J]. Radiology, 1999, 211(1): 101-110.
13
Liu F, Kornecki A, Shmuilovich O, et al. Optimization of time-to-peak analysis for differentiating malignant and benign breast lesions with dynamic contrast-enhanced MRI [J]. Acad Radiol, 2011, 18(6): 694-704.
14
Kim JY, Kim SH, Kim YJ, et al. Enhancement parameters on dynamic contrast enhanced breast MRI: do they correlate with prognostic factors and subtypes of breast cancers?[J]. Magn Reson Imaging, 2015, 33(1): 72-80.
15
American College of Radiology. BI-RADS Atlas [M]. Reston: American College of Radiology, 2013.
16
Partridge SC, Nissan N, Rahbar H, et al. Diffusion-weighted breast MRI: Clinical applications and emerging techniques [J]. J Magn Reson Imaging, 2017, 45(2): 337-355.
17
Shi RY, Yao QY, Wu LM, et al. Breast lesions: diagnosis using diffusion weighted imaging at 1.5T and 3.0T-systematic review and Meta-analysis [J]. Clin Breast Cancer, 2018, 18(3): e305-e320.
18
Lee JM, Abraham L, Lam DL, et al. Cumulative risk distribution for interval invasive second breast cancers after negative surveillance mammography [J]. J Clin Oncol, 2018, 36(20): 2070-2077.
19
Morrogh M, Morris EA, Liberman L, et al. MRI identifies otherwise occult disease in select patients with Paget disease of the nipple [J]. J Am Coll Surg, 2008, 206(2): 316-321.
20
Kuhl CK, Strobel K, Bieling H, et al. Impact of preoperative breast MR Imaging and mr-guided surgery on diagnosis and surgical outcome of women with invasive breast cancer with and without DCIS component [J]. Radiology, 2017, 284(3): 645-655.
21
Lee CI, Chen LE, Elmore JG. Risk-based breast cancer screening: implications of breast density [J]. Med Clin North Am, 2017, 101(4): 725-741.
22
Thomassin-Naggara I, Siles P, Trop I, et al. How to measure breast cancer tumoral size at MR imaging [J]. Eur J Radiol, 2013, 82(12): e790-e800.
23
Romeo V, Picariello V, Pignata A, et al. Influence of different post-contrast time points on dynamic contrast-enhanced (DCE) MRI T staging in breast cancer [J]. Eur J Radiol, 2020, 124: 108819.
24
Choi WJ, Cha JH, Kim HH, et al. The accuracy of breast MR imaging for measuring the size of a breast cancer: analysis of the histopathologic factors [J]. Clin Breast Cancer, 2016, 16(6): e145-e152.
25
Plana MN, Carreira C, Muriel A, et al. Magnetic resonance imaging in the preoperative assessment of patients with primary breast cancer: systematic review of diagnostic accuracy and meta-analysis [J]. Eur Radiol, 2012, 22(1): 26-38.
26
Ecanow JS, Abe H, Newstead GM, et al. Axillary staging of breast cancer: what the radiologist should know [J]. Radio Graphics, 2013, 33(6): 1589-1612.
27
Hyun SJ, Kim EK, Moon HJ, et al. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?[J]. Eur Radiol, 2016, 26(11): 3865-3873.
28
van Nijnatten TJA, Ploumen EH, Schipper RJ, et al. Routine use of standard breast MRI compared to axillary ultrasound for differentiating between no, limited and advanced axillary nodal disease in newly diagnosed breast cancer patients [J]. Eur J Radiol, 2016, 85(12): 2288-2294.
29
Han L, Zhu Y, Liu Z, et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer [J]. Eur Radiol, 2019, 29(7): 3820-3829.
30
Ha R, Chang P, Karcich J, et al. Axillary lymph node evaluation utilizing convolutional neural networks using MRI dataset [J]. J Digit Imaging, 2018, 31(6): 851-856.
31
King TA, Morrow M. Surgical issues in patients with breast cancer receiving neoadjuvant chemotherapy [J]. Nat Rev Clin Oncol, 2015, 12(6): 335-343.
32
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J]. Lancet, 2014, 384(9938): 164-172.
33
Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) [J]. Eur J Cancer, 2009, 45(2): 228-247.
34
Scheel JR, Kim E, Partridge SC, et al. MRI, clinical examination, and mammography for preoperative assessment of residual disease and pathologic complete response after neoadjuvant chemotherapy for breast cancer: ACRIN 6657 Trial [J]. AJR Am J Roentgenol, 2018, 210(6): 1376-1385.
35
Padhani AR, Hayes C, Assersohn L, et al. Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results [J]. Radiology, 2006, 239(2): 361-374.
36
McLaughlin R, Hylton N. MRI in breast cancer therapy monitoring [J]. NMR Biomed, 2011, 24(6): 712-720.
37
Kim Y, Kim SH, Song BJ, et al. Early prediction of response to neoadjuvant chemotherapy using dynamic contrast-enhanced MRI and ultrasound in breast cancer [J]. Korean J Radiol, 2018, 19(4): 682-691.
38
Dogan BE, Yuan Q, Bassett R, et al. Comparing the performances of magnetic resonance imaging size vs pharmacokinetic parameters to predict response to neoadjuvant chemotherapy and survival in patients with breast cancer [J]. Curr Probl Diagn Radiol, 2019, 48(3): 235-240.
39
Partridge SC, Zhang Z, Newitt DC, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: The ACRIN 6698 Multicenter Trial [J]. Radiology, 2018, 289(3): 618-627.
40
Comstock CE, Gatsonis C, Newstead GM, et al. Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening [J]. JAMA, 2020, 323(8): 746-756.
41
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data [J]. Radiology, 2016, 278(2): 563-577.
42
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
43
Valdora F, Houssami N, Rossi F, et al. Rapid review: radiomics and breast cancer [J]. Breast Cancer Res Treat, 2018, 169(2): 217-229.
44
Parekh VS, Jacobs MA. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI [J]. NPJ Breast Cancer, 2017, 3(1): 43-49.
45
Li H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set [J]. NPJ Breast Cancer, 2016, 2(1): 16012.
46
Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J]. European Radiology, 2019, 29(3): 1211-1220.
47
Pinker K, Bogner W, Baltzer P, et al. Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T [J]. Eur Radiol, 2014, 24(4): 913-920.
48
Gruber S, Pinker K, Zaric O, et al. Dynamic contrast-enhanced magnetic resonance imaging of breast tumors at 3 and 7 T: a comparison [J]. Invest Radiol, 2014, 49(5): 354-362.
49
Ma D, Lu F, Zou X, et al. Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions [J]. Magn Reson Imaging, 2017, 36: 175-179.
50
Kim Y, Ko K, Kim D, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes [J]. Br J Radiol, 2016, 89(1063): 20160140.
51
Sun K, Chen X, Chai W, et al. Breast cancer: Diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors [J]. Radiology, 2015, 277(1): 46-55.
52
Zaric O, Pinker K, Zbyn S, et al. Quantitative sodium MR imaging at 7 T: Initial results and comparison with diffusion-weighted imaging in patients with breast tUMORS [J]. Radiology, 2016, 280(1): 39-48.
53
Zhang S, Seiler S, Wang X, et al. CEST-Dixon for human breast lesion characterization at 3 T: A preliminary study [J]. Magn Reson Med, 2018, 80(3): 895-903.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[3] 杨柳, 宋振川, 王新乐. 乳腺癌改良根治术联合背阔肌复位的临床疗效评估[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 269-273.
[4] 张钊, 骆成玉, 张树琦, 何平, 李旭斌. 不同术式治疗早期乳腺癌的效果及并发症发生率、复发率比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 494-497.
[5] 宋佳, 汪波, 孙凯律, 商江峰, 吴旦平, 肇毅. 吲哚菁绿荧光显影联合亚甲蓝染色在乳腺癌前哨淋巴结活检中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 498-501.
[6] 孙建娜, 孔令军, 任崇禧, 穆坤, 王晓蕊. 266例首诊Ⅳ期乳腺癌手术患者预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 502-505.
[7] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[8] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[9] 张龙, 孙善柯, 徐伟, 李文柱, 李俊达, 池涌泉, 何广胜, 成峰, 王学浩, 饶建华. 腹腔镜脾切除治疗血液系统疾病的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 870-875.
[10] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[11] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[12] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 王帅, 张志远, 苏雨晴, 李雯雯, 王守凯, 刘琦, 李文涛. 孟德尔随机化及其在乳腺癌研究中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 671-676.
[15] 张梦婷, 穷拉姆, 色珍, 李逸群, 德庆旺姆. 西藏地区藏族乳腺癌新辅助化疗的真实世界研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 441-446.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?